Try NopSCADlib for your Next OpenSCAD Project

Most readers of this site are familiar by now with the OpenSCAD 3D modeling software, where you can write code to create 3D models. You may have even used OpenSCAD to output some STL files for your 3D printer. But for years now, [nophead] has been pushing OpenSCAD further than …read more

Continue reading Try NopSCADlib for your Next OpenSCAD Project

Knitting Software Automatically Converts 3D Models into Machine-knit Stuffies

We’ve seen our fair share of interesting knitting hacks here at Hackaday. There has been a lot of creative space explored while mashing computers into knitting machines and vice versa, but for the most part the resulting knit goods all tend to be a bit… two-dimensional. The mechanical reality of …read more

Continue reading Knitting Software Automatically Converts 3D Models into Machine-knit Stuffies

Soft Silicone Pneumatics Are 3D-printed In A Tub Of Gel

We’ve seen our fair share of soft silicone robots around here. Typically they are produced through a casting process, where molds are printed and then filled with liquid silicone to form the robot parts. These parts are subsequently removed from the molds and made to wiggle, grip, and swim through the use of pneumatic or hydraulic pumps and valves. MIT’s Self-Assembly Lab has found a way to print the parts directly instead, by extruding silicone, layer by layer, into a gel-filled tank.

The Self-Assembly Lab’s site is unfortunately light on details, but there is a related academic paper (behind a …read more

Continue reading Soft Silicone Pneumatics Are 3D-printed In A Tub Of Gel

Alice Evans: Brucellosis, or Why We Pasteurize Milk

It’s easy to forget how much illness and death was caused by our food and drink just one hundred years ago. Our modern food systems, backed by sound research and decent regulation, have elevated food safety to the point where outbreaks of illness are big news. If you get sick from a burger, or a nice tall glass of milk, it’s no longer a mystery what happened. Instead we ask why, and “who screwed up?”

In the early 20th century though, many food-borne illnesses were still a mystery, and microbiology was a scientific endeavor that was just getting started. Alice …read more

Continue reading Alice Evans: Brucellosis, or Why We Pasteurize Milk

Low-energy ESP8266-based Board Sleeps Like a Log Until Triggered

Given the popularity of hacking and repurposing Amazon Dash buttons, there appears to be a real need amongst tinkerers for a simple “do something interesting on the internet when a button is pressed” device. If you have this need but don’t feel like fighting to bend a Dash device to your will, take a look at [Kevin Darrah]’s trigBoard instead.

The trigBoard is a battery-powered, ESP8266-based board that includes some clever circuitry to help it barely sip power (less than one microamp!) while waiting to be triggered by a digital input. This input could be a magnetic reed switch, push …read more

Continue reading Low-energy ESP8266-based Board Sleeps Like a Log Until Triggered

Pint-sized Jacob’s Ladder Packs 10,000 Volts in a Pickle Jar

File this one away for your mad scientist costume next Halloween: [bitluni]’s Pocket Jacob’s Ladder is the perfect high voltage accessory for those folks with five dollars in parts, a 3D printer, and very big pockets.

[bitluni]’s video shows you all the parts you’ll need and guides you through the very simple build process. For parts, you’ll require a cheap and readily-available high-voltage transformer, a battery holder, some silver wire for the conductors, and a few other minor bits like solder and a power switch.

Once the electronics are soldered together, they’re stuffed inside a 3d printed case that [bitluni] …read more

Continue reading Pint-sized Jacob’s Ladder Packs 10,000 Volts in a Pickle Jar

Short Length of Wire Turns STM32 Microcontroller into Good-enough Wireless UART Blaster

Hackaday regular [befinitiv] wrote into the tip line to let us know about a hack you might enjoy, wireless UART output from a bare STM32 microcontroller. Desiring the full printf debugging experience, but constrained both by available space and expense, [befinitiv] was inspired to improvise by a similar hack that used the STM32 to send Morse code over standard FM frequencies.

In this case, [befinitiv]’s solution is both more useful and slightly more legal, as the software uses the 27 MHz ISM band to blast out ASK modulated serial data through a simple wire antenna attached to one of the …read more

Continue reading Short Length of Wire Turns STM32 Microcontroller into Good-enough Wireless UART Blaster

Open Data Cam Combines Camera, GPU, and Neural Network in an Artisanal DIY Cereal Box

The engineers and product designers at [moovel lab] have created the Open Data Cam – an AI camera platform that can identify and count objects as they move through its field of view – along with an open source guide for making your own.

Step one: get out your ruler and utility knife. In this world of ubiquitous 3D-printers they’ve taken a decidedly low-tech approach to the project’s enclosure: a cut, folded, and zip-tied plastic box, with a cardboard frame inside to hold the electronic bits. It’s “splash proof” and certainly cheap to make, but we’re a little worried about …read more

Continue reading Open Data Cam Combines Camera, GPU, and Neural Network in an Artisanal DIY Cereal Box

Blazing Fast Raspberry Pi Display Driver Will Melt Your Face then Teach You How

Reader [poipoi] recently wrote into our tip line to tell us about an “amazingly fast” Raspberry Pi display driver with a README file that “is an actual joy to read”. Of course, we had to see for ourselves. The fbcp-ili9341 repo, by [juj], seems to live up to the hype! The software itself appears impressive, and the README is detailed, well-structured, educational, and dare we say entertaining?

The driver’s main goal is to produce high frame rates — up to around 60 frames per second — over an SPI bus, and it runs on various Raspberry Pi devices including the …read more

Continue reading Blazing Fast Raspberry Pi Display Driver Will Melt Your Face then Teach You How

Use Nodes to Code Loads of G-code for 3D CNC Carving

Most CNC workflows start with a 3D model, which is then passed to CAM software to be converted into the G-code language that CNC machines love and understand. G-code, however, is simple enough that rudimentary coding skills are all you need to start writing your very own programmatic CNC tool paths. Any language that can output plain text is fully capable of enabling you to directly control powerful motors and rapidly spinning blades.

[siemenc] shows us how to use Grasshopper – a visual node-based programming system for Rhino 3D – to output G-code that makes some interesting patterns and shapes …read more

Continue reading Use Nodes to Code Loads of G-code for 3D CNC Carving