Irène Joliot-Curie and Artificial Radioactivity

When Marie and Pierre Curie discovered the natural radioactive elements polonium and radium, they did something truly remarkable– they uncovered an entirely new property of matter. The Curies’ work was the key to unlocking the mysteries of the atom, which was previously thought to be indivisible. Their research opened the door to nuclear medicine and clean energy, and it also led to the development of nuclear weapons.

Irène Joliot-Curie, her husband Frédéric, and many of their contemporaries were completely against the use of nuclear science as a weapon. They risked their lives to guard their work from governments hell-bent on …read more

Continue reading Irène Joliot-Curie and Artificial Radioactivity

The Mother of All Demos, 50 Years On

If you’re like me, chances are pretty good that you’ve been taught that all the elements of the modern computer user interface — programs running in windows, menus, icons, WYSIWYG editing of text documents, and of course, the venerable computer mouse — descended from the hallowed halls of the Xerox Corporation’s Palo Alto Research Center in the early 1970s. And it’s certainly true that PARC developed these technologies and more, including the laser printer and object-oriented programming, all of which would grace first the workplaces of the world and later the homes of everyday people.

But none of these technologies …read more

Continue reading The Mother of All Demos, 50 Years On

Julius Lilienfeld and the First Transistor

Here’s a fun exercise: take a list of the 20th century’s inventions and innovations in electronics, communications, and computing. Make sure you include everything, especially the stuff we take for granted. Now, cross off everything that can’t trace its roots back to the AT&T Corporation’s research arm, the Bell Laboratories. We’d wager heavily that the list would still contain almost everything that built the electronics age: microwave communications, data networks, cellular telephone, solar cells, Unix, and, of course, the transistor.

But is that last one really true? We all know the story of Bardeen, Brattain, and Shockley, the brilliant team …read more

Continue reading Julius Lilienfeld and the First Transistor

Daphne Oram and the Birth of Electronic Music

For most of human history, musical instruments were strictly mechanical devices. The musician either plucked something, blew into or across something, or banged on something to produce the sounds the occasion called for. All musical instruments, the human voice included, worked by vibrating air more or less directly as a result of these mechanical manipulations.

But if one thing can be said of musicians at any point in history, it’s that they’ll use anything and everything to create just the right sound. The dawn of the electronic age presented opportunities galore for musicians by giving them new tools to create …read more

Continue reading Daphne Oram and the Birth of Electronic Music

Alice Evans: Brucellosis, or Why We Pasteurize Milk

It’s easy to forget how much illness and death was caused by our food and drink just one hundred years ago. Our modern food systems, backed by sound research and decent regulation, have elevated food safety to the point where outbreaks of illness are big news. If you get sick from a burger, or a nice tall glass of milk, it’s no longer a mystery what happened. Instead we ask why, and “who screwed up?”

In the early 20th century though, many food-borne illnesses were still a mystery, and microbiology was a scientific endeavor that was just getting started. Alice …read more

Continue reading Alice Evans: Brucellosis, or Why We Pasteurize Milk

Oliver Heaviside: Rags to Recognition, to Madness

Like any complex topic, electromagnetic theory has its own vocabulary. When speaking about dielectrics we may refer to their permittivity, and discussions on magnetic circuits might find terms like reluctance and inductance bandied about. At a more practical level, a ham radio operator might discuss the impedance of the coaxial cable used to send signals to an antenna that will then be bounced off the ionosphere for long-range communications.

It’s everyday stuff to most of us, but none of this vocabulary would exist if it hadn’t been for Oliver Heaviside, the brilliant but challenging self-taught British electrical engineer and …read more

Continue reading Oliver Heaviside: Rags to Recognition, to Madness

Sidney Darlington

In a field where components and systems are often known by sterile strings of characters that manufacturers assign or by cutesy names that are clearly products of the marketing department and their focus groups, having your name attached to an innovation is rare. Rarer still is the case where the mere mention of an otherwise obscure inventor’s name brings up a complete schematic in the listener’s mind.

Given how rarely such an honor is bestowed, we’d be forgiven to think that Sidney Darlington’s only contribution to electronics is the paired transistor he invented in the 1950s that bears his name …read more

Continue reading Sidney Darlington

Publish or Perish: The Sad Genius of Ignaz Semmelweis

Of all the lessons that life hands us, one of the toughest is that you can be right about something but still come up holding the smelly end of the stick. Typically this is learned early in life, but far too many of us avoid this harsh truth well into adulthood. And in those cases where being right is literally a matter of life or death, it’s even more difficult to learn that lesson.

For Ignaz Semmelweis, a Hungarian physician-scientist in the mid-19th century, failure to learn that being right is attended by certain responsibilities had a very high cost. …read more

Continue reading Publish or Perish: The Sad Genius of Ignaz Semmelweis

Kathleen Booth: Assembling Early Computers While Inventing Assembly

Imagine having to program your computer by rewiring it. For a brief period of time around the mid-1940s, the first general-purpose electronic computers worked that way. Computers like ENIAC initially had no internal storage for code. Programming it involved manipulating thousands of switches and cables. The positions of those switches and cables were the program.

Kathleen Booth began working on computers just as the idea of storing the program internally was starting to permeate through the small set of people building computers. As a result, she was one of the first programmers to work on software and is credited with …read more

Continue reading Kathleen Booth: Assembling Early Computers While Inventing Assembly

Edwin Armstrong’s Battle for FM Radio

Chances are you have at least one radio that can receive FM stations. Even though FM is becoming less used now with Internet and satellite options, it still is more popular than the older AM radio bands. FM was the brainchild of an inventor you may have heard of — Edwin Armstrong — but you probably don’t know the whole story. It could make a sort of radio-themed soap opera. It is a story of innovation, but also a story of personal vanity, corporate greed, stubbornness, marital problems, and even suicide. The only thing missing is a long-lost identical twin …read more

Continue reading Edwin Armstrong’s Battle for FM Radio