Fail of the Week: Supercapacitor Spot Welder

[Julian] needed to weld a bit of nickel to some steel and decided to use a spot welding technique. Of course he didn’t have a spot welder sitting around. Since these are fairly simple machines so [Julian] set out to build a spot welder using a charged supercapacitor. The fundamentals …read more

Continue reading Fail of the Week: Supercapacitor Spot Welder

World’s Smallest LED Blinky

[Mike Harrison] is known for incredibly tiny soldering. Now he’s claiming a “world’s smallest” in the form of a stand-alone LED blinker, and we think he’s got the record.

He brought it along with him to Friday’s Beagleboard Bring-a-Hack, and we got a close look at the diminutive assembly. The project was dreamed up when [Mike] saw an announcement from Seiko about a new supercapacitor in a tiny package (likely the CPH3225A giving the blinky a footprint of 3.2 x 2.5 mm). With that in hand he added a PIC 10f322 microcontroller in a SOT23 package, an 0603 smoothing capacitor, …read more

Continue reading World’s Smallest LED Blinky

The Un-Economy Of Building Your Own Spot Welder

If there’s one thing that brings hackers together, it’s the ability to build something for less money than it takes to buy it. It’s an exercise [Great Scott Gadgets] put to the test because he was playing around with some 18650 lithium cells, and had a huge need to put some tabs on batteries. This can be done by soldering, but to do it right you should really use a spot welder. Here’s the rub: you can buy a spot welder for about $250, and you can build one for a little less. So, the question: should [Great Scott] build …read more

Continue reading The Un-Economy Of Building Your Own Spot Welder

PTPM Energy Scavenger Aims for Maintenance-Free Sensor Nodes

[Mile]’s PTPM Energy Scavenger takes the scavenging idea seriously and is designed to gather not only solar power but also energy from temperature differentials, vibrations, and magnetic induction. The idea is to make wireless sensor nodes that can be self-powered and require minimal maintenance. There’s more to the idea than simply doing away with batteries; if the devices are rugged and don’t need maintenance, they can be installed in locations that would otherwise be impractical or awkward. [Mile] says that goal is to reduce the most costly part of any supply chain: human labor.

The prototype is working well with …read more

Continue reading PTPM Energy Scavenger Aims for Maintenance-Free Sensor Nodes

Hackaday Prize Entry: Self Sustained Low Power Nodes

Consider for a second the Internet of Things. A vast network of connected devices, programmable matter, and wearable electronics can only mean one thing: there’s going to be a ton of batteries. While changing the battery in a smoke detector may seem tolerable, changing the batteries in a thousand sensor nodes is untenable. The solution to this problem is self-contained sensor nodes, and right now the best power source for mobile devices is probably solar.

For his Hackaday Prize entry, [Shantam Raj] is building a self-contained sensor node. It’s a Bluetooth device for the Internet side of this Thing, but …read more

Continue reading Hackaday Prize Entry: Self Sustained Low Power Nodes

Hand Cranked Generator Charges Supercaps, Starts Car

Pity the lowly lead-acid battery. A century of use as the go-to method for storing enough electrons to spin the starter motor of a car engine has endeared it to few.  Will newer technology supplant that heavy, toxic, and corrosive black box under your hood? If this supercapacitor boost box is any indication, then we’d say lead-acid’s days are numbered.

To be fair, we’ll bet that number is still pretty big. It takes a lot to displace a tried and true technology, especially for something as optimized as the lead-acid battery. But [lasersaber]’s build shows just how far capacitive storage …read more

Continue reading Hand Cranked Generator Charges Supercaps, Starts Car