The Anxiety of Open Source: Why We Struggle With Putting It Out There

You’ve just finished your project. Well, not finished, but it works and you’ve solved all the problems worth solving, and you have a thing that works for you. Then you think about sharing your creation with the world. “This is cool” you think. “Other people might think it’s cool, too.” So you have to take pictures and video, and you wish you had documented some more of the assembly steps, and you have to do a writeup, and comment your code, and create a repository for it, maybe think about licensing. All of a sudden, the actual project was only …read more

Continue reading The Anxiety of Open Source: Why We Struggle With Putting It Out There

Robotic Arms Controlled By Your….. Feet?

The days of the third hand’s dominance of workshops the world over is soon coming to an end. For those moments when only a third hand is not enough, a fourth is there to save the day.

Dubbed MetaLimbs and developed by a team from the [Inami Hiyama Laboratory] at the University of Tokyo and the [Graduate School of Media Design] at Keio University, the device is designed to be worn while sitting — strapped to your back like a knapsack — but use while standing stationary is possible, if perhaps a little un-intuitive. Basic motion is controlled by the …read more

Continue reading Robotic Arms Controlled By Your….. Feet?

Recapture Radio’s Roots with an Updated Regenerative Receiver

Crystal radios used to be the “gateway drug” into hobby electronics. Trouble was, there’s only so much one can hope to accomplish with a wire-wrapped oatmeal carton, a safety-pin, and a razor blade. Adding a few components and exploring the regenerative circuit can prove to be a little more engaging, and that’s where this simple breadboard regen radio comes in.

Sometimes it’s the simple concepts that can capture the imagination, and revisiting the classics is a great way to do it. Basically a reiteration of [Armstrong]’s original 1912 regenerative design, [VonAcht] uses silicon where glass was used, but the principle …read more

Continue reading Recapture Radio’s Roots with an Updated Regenerative Receiver

Derek Schulte: Path Planning for 3D Printers

[Derek Schulte] designed and sells a consumer 3D printer, and that gives him a lot of insight into what makes them tick. His printer, the New Matter MOD-t, is different from the 3D printer that you’re using now in a few different ways. Most interestingly, it uses closed-loop feedback and DC motors instead of steppers, and it uses a fairly beefy 32-bit ARM processor instead of the glorified Arduino Uno that’s running many printers out there.

The first of these choices meant that [Derek] had to write his own motor control and path planning software, and the second means that …read more

Continue reading Derek Schulte: Path Planning for 3D Printers

Derek Schulte: Path Planning for 3D Printers

[Derek Schulte] designed and sells a consumer 3D printer, and that gives him a lot of insight into what makes them tick. His printer, the New Matter MOD-t, is different from the 3D printer that you’re using now in a few different ways. Most interestingly, it uses closed-loop feedback and DC motors instead of steppers, and it uses a fairly beefy 32-bit ARM processor instead of the glorified Arduino Uno that’s running many printers out there.

The first of these choices meant that [Derek] had to write his own motor control and path planning software, and the second means that …read more

Continue reading Derek Schulte: Path Planning for 3D Printers

Impraise lets you tell your coworkers what a good job they’re doing

maxresdefault “We’ve come a long long way together, through the hard times and the good. I have to celebrate you baby, I have to praise you like I should using a 360-degree feedback tool sold as as SaaS by founders who went through Y-Combinator in S14 and have offices in New York and Amsterdam,” Fatboy Slim once wrote and nowhere are these words truer than when used to describe Impraise.… Read More Continue reading Impraise lets you tell your coworkers what a good job they’re doing

A Buck-Boost Converter from the Ground Up

DC to DC conversion has come a long way. What was once took an electromechanical vibrator and transformer has been reduced to a PC board the size of a largish postage stamp that can be had for a couple of bucks on eBay. So why roll your own buck-boost converter for the ground up? Maybe because sometimes the best way to learn is by doing.

When it comes to clear and succinct explanations, [GreatScott!] has you covered. We recently reported on one of the videos from his Electronic Basics series, but the video below covers the slightly more advanced topic …read more

Continue reading A Buck-Boost Converter from the Ground Up