Micromachining Glass with a Laser — Very, Very Slowly

When it comes to machining, the material that springs to mind is likely to be aluminum, steel, or plastic. We don’t necessarily think of glass as a material suitable for machining, at least not in the chuck-it-up-in-the-lathe sense. But glass is a material that needs to be shaped, too, and …read more

Continue reading Micromachining Glass with a Laser — Very, Very Slowly

Chemistry and Lasers Turn Any Plastic Surface Into a PCB

On the face of it, PCB production seems to pretty much have been reduced to practice. Hobbyists have been etching their own boards forever, and the custom PCB fabrication market is rich with vendors whose capabilities span the gamut from dead simple one-side through-hole boards to the finest pitch multilayer SMD boards imaginable.

So why on Earth would we need yet another way to make PCBs? Because as [Ben Krasnow] points out, the ability to turn almost any plastic surface into a PCB can be really handy, and is not necessarily something the fab houses handle right now. The video …read more

Continue reading Chemistry and Lasers Turn Any Plastic Surface Into a PCB

The (Copper) Crystal Method

One of the staples of kitchen chemistry for kids is making sugar crystals or rock candy. Why not? It is educational and it tastes good, too. [Science with Screens] has a different kind of crystal in mind: copper crystals. You can see the result in the video below.

To grow pure metal crystals, he used copper wire and copper sulfate. He also used a special regulated power supply to create a low voltage to control the current used to form the crystal. The current needed to be no more than 10mA, and an LM317 holds the voltage constant. However, that …read more

Continue reading The (Copper) Crystal Method