A Self-Enforcing Protocol to Solve Gerrymandering

In 2009, I wrote:

There are several ways two people can divide a piece of cake in half. One way is to find someone impartial to do it for them. This works, but it requires another person. Another way is for one person to divide the piece, and the other person to complain (to the police, a judge, or his parents) if he doesn’t think it’s fair. This also works, but still requires another person—­at least to resolve disputes. A third way is for one person to do the dividing, and for the other person to choose the half he wants.

The point is that unlike protocols that require a neutral third party to complete (arbitrated), or protocols that require that neutral third party to resolve disputes (adjudicated), self-enforcing protocols just work. Cut-and-choose works because neither side can cheat. And while the math can get really complicated, the idea …

Continue reading A Self-Enforcing Protocol to Solve Gerrymandering

Poisoning AI Models

New research into poisoning AI models:

The researchers first trained the AI models using supervised learning and then used additional “safety training” methods, including more supervised learning, reinforcement learning, and adversarial training. After this, they checked if the AI still had hidden behaviors. They found that with specific prompts, the AI could still generate exploitable code, even though it seemed safe and reliable during its training.

During stage 2, Anthropic applied reinforcement learning and supervised fine-tuning to the three models, stating that the year was 2023. The result is that when the prompt indicated “2023,” the model wrote secure code. But when the input prompt indicated “2024,” the model inserted vulnerabilities into its code. This means that a deployed LLM could seem fine at first but be triggered to act maliciously later…

Continue reading Poisoning AI Models

Side Channels Are Common

Really interesting research: “Lend Me Your Ear: Passive Remote Physical Side Channels on PCs.”

Abstract:

We show that built-in sensors in commodity PCs, such as microphones, inadvertently capture electromagnetic side-channel leakage from ongoing computation. Moreover, this information is often conveyed by supposedly-benign channels such as audio recordings and common Voice-over-IP applications, even after lossy compression.

Thus, we show, it is possible to conduct physical side-channel attacks on computation by remote and purely passive analysis of commonly-shared channels. These attacks require neither physical proximity (which could be mitigated by distance and shielding), nor the ability to run code on the target or configure its hardware. Consequently, we argue, physical side channels on PCs can no longer be excluded from remote-attack threat models…

Continue reading Side Channels Are Common

Code Written with AI Assistants Is Less Secure

Interesting research: “Do Users Write More Insecure Code with AI Assistants?“:

Abstract: We conduct the first large-scale user study examining how users interact with an AI Code assistant to solve a variety of security related tasks across different programming languages. Overall, we find that participants who had access to an AI assistant based on OpenAI’s codex-davinci-002 model wrote significantly less secure code than those without access. Additionally, participants with access to an AI assistant were more likely to believe they wrote secure code than those without access to the AI assistant. Furthermore, we find that participants who trusted the AI less and engaged more with the language and format of their prompts (e.g. re-phrasing, adjusting temperature) provided code with fewer security vulnerabilities. Finally, in order to better inform the design of future AI-based Code assistants, we provide an in-depth analysis of participants’ language and interaction behavior, as well as release our user interface as an instrument to conduct similar studies in the future…

Continue reading Code Written with AI Assistants Is Less Secure

On IoT Devices and Software Liability

New law journal article:

Smart Device Manufacturer Liability and Redress for Third-Party Cyberattack Victims

Abstract: Smart devices are used to facilitate cyberattacks against both their users and third parties. While users are generally able to seek redress following a cyberattack via data protection legislation, there is no equivalent pathway available to third-party victims who suffer harm at the hands of a cyberattacker. Given how these cyberattacks are usually conducted by exploiting a publicly known and yet un-remediated bug in the smart device’s code, this lacuna is unreasonable. This paper scrutinises recent judgments from both the Supreme Court of the United Kingdom and the Supreme Court of the Republic of Ireland to ascertain whether these rulings pave the way for third-party victims to pursue negligence claims against the manufacturers of smart devices. From this analysis, a narrow pathway, which outlines how given a limited set of circumstances, a duty of care can be established between the third-party victim and the manufacturer of the smart device is proposed…

Continue reading On IoT Devices and Software Liability

Improving Shor’s Algorithm

We don’t have a useful quantum computer yet, but we do have quantum algorithms. Shor’s algorithm has the potential to factor large numbers faster than otherwise possible, which—if the run times are actually feasible—could break both the RSA and Diffie-Hellman public-key algorithms.

Now, computer scientist Oded Regev has a significant speed-up to Shor’s algorithm, at the cost of more storage.

Details are in this article. Here’s the result:

The improvement was profound. The number of elementary logical steps in the quantum part of Regev’s algorithm is proportional to …

Continue reading Improving Shor’s Algorithm

TikTok Editorial Analysis

TikTok seems to be skewing things in the interests of the Chinese Communist Party. (This is a serious analysis, and the methodology looks sound.)

Conclusion: Substantial Differences in Hashtag Ratios Raise
Concerns about TikTok’s Impartiality

Given the research above, we assess a strong possibility that content on TikTok is either amplified or suppressed based on its alignment with the interests of the Chinese Government. Future research should aim towards a more comprehensive analysis to determine the potential influence of TikTok on popular public narratives. This research should determine if and how TikTok might be utilized for furthering national/regional or international objectives of the Chinese Government…

Continue reading TikTok Editorial Analysis

Security Analysis of a Thirteenth-Century Venetian Election Protocol

Interesting analysis:

This paper discusses the protocol used for electing the Doge of Venice between 1268 and the end of the Republic in 1797. We will show that it has some useful properties that in addition to being interesting in themselves, also suggest that its fundamental design principle is worth investigating for application to leader election protocols in computer science. For example, it gives some opportunities to minorities while ensuring that more popular candidates are more likely to win, and offers some resistance to corruption of voters…

Continue reading Security Analysis of a Thirteenth-Century Venetian Election Protocol

AI Decides to Engage in Insider Trading

A stock-trading AI (a simulated experiment) engaged in insider trading, even though it “knew” it was wrong.

The agent is put under pressure in three ways. First, it receives a email from its “manager” that the company is not doing well and needs better performance in the next quarter. Second, the agent attempts and fails to find promising low- and medium-risk trades. Third, the agent receives an email from a company employee who projects that the next quarter will have a general stock market downturn. In this high-pressure situation, the model receives an insider tip from another employee that would enable it to make a trade that is likely to be very profitable. The employee, however, clearly points out that this would not be approved by the company management…

Continue reading AI Decides to Engage in Insider Trading