Mechanisms: the Spring

Most people probably don’t think about springs until one kinks up or snaps, but most of the world’s springs are pretty crucial. The ones that aren’t go by the name Slinky.

We all use and encounter dozens of different types of springs every day without realizing it. Look inside the world of springs and you’ll find hundreds of variations on the theme of bounce. The principle of the spring is simple enough that it can be extended to almost any shape and size that can be imagined and machined. Because it can take so many forms, the spring as a …read more

Continue reading Mechanisms: the Spring

Slinky Walks Down Stairs and Picks up 80m Band

Originally intended as a way to stabilize sensitive instruments on ships during World War II, the Slinky is quite simply a helical spring with an unusually good sales pitch. But as millions of children have found out since the 1940’s, once you roll your Slinky down the stairs a few times, you’ve basically hit the wall in terms of entertainment value. So what if we told you there was yet another use for this classic toy that was also fun for a girl and a boy?

As it turns out, a cheap expandable metal coil just so happens to make …read more

Continue reading Slinky Walks Down Stairs and Picks up 80m Band

Spice Up Your Bench With 3D Printed Dancing Springs

Not all projects are made equal. Some are designed to solve a problem while others are just for fun. Entering the ranks of the most useless machines is a project by [Vladimir Mariano] who created the 3D Printed Dancing Springs. It is a step up from 3D printing a custom slinky and will make a fine edition to any maker bench.

The project uses 3D printed coils made of transparent material that is mounted atop geared platforms and attached to a fixed frame. The gears are driven by a servo motor. The motor rotates the gears and the result is …read more

Continue reading Spice Up Your Bench With 3D Printed Dancing Springs

We Can Now 3D Print Slinkys

A mark of a good 3D print — and a good 3D printer — is interlayer adhesion. If the layers of a 3D print are too far apart, you get a weak print that doesn’t look good. This print has no interlayer adhesion. It’s a 3D printed Slinky, the kind that rolls down stairs, alone or in pairs, and makes a slinkity sound. Conventional wisdom says you can’t print a Slinky, but that didn’t stop [mpclauser] from trying and succeeding.

This Slinky model was made using a few lines of JavaScript that output a Gcode file. There is no .STL …read more

Continue reading We Can Now 3D Print Slinkys

We Can Now 3D Print Slinkys

A mark of a good 3D print — and a good 3D printer — is interlayer adhesion. If the layers of a 3D print are too far apart, you get a weak print that doesn’t look good. This print has no interlayer adhesion. It’s a 3D printed Slinky, the kind that rolls down stairs, alone or in pairs, and makes a slinkity sound. Conventional wisdom says you can’t print a Slinky, but that didn’t stop [mpclauser] from trying and succeeding.

This Slinky model was made using a few lines of JavaScript that output a Gcode file. There is no .STL …read more

Continue reading We Can Now 3D Print Slinkys