In Memoriam: Ross Anderson, 1956–2024

Last week, I posted a short memorial of Ross Anderson. The Communications of the ACM asked me to expand it. Here’s the longer version.
EDITED TO ADD (4/11): Two weeks before he passed away, Ross gave an 80-minute interview where he told his life … Continue reading In Memoriam: Ross Anderson, 1956–2024

Ross Anderson

Ross Anderson unexpectedly passed away Thursday night in, I believe, his home in Cambridge.

I can’t remember when I first met Ross. Of course it was before 2008, when we created the Security and Human Behavior workshop. It was well before 2001, when we created the Workshop on Economics and Information Security. (Okay, he created both—I helped.) It was before 1998, when we wrote about the problems with key escrow systems. I was one of the people he brought to the Newton Institute, at Cambridge University, for the six-month cryptography residency program he ran (I mistakenly didn’t stay the whole time)—that was in 1996…

Continue reading Ross Anderson

New Report on IoT Security

The Atlantic Council has published a report on securing the Internet of Things: “Security in the Billions: Toward a Multinational Strategy to Better Secure the IoT Ecosystem.” The report examines the regulatory approaches taken by four countries—the US, the UK, Australia, and Singapore—to secure home, medical, and networking/telecommunications devices. The report recommends that regulators should 1) enforce minimum security standards for manufacturers of IoT devices, 2) incentivize higher levels of security through public contracting, and 3) try to align IoT standards internationally (for example, international guidance on handling connected devices that stop receiving security updates)…

Continue reading New Report on IoT Security

Manipulating Machine-Learning Systems through the Order of the Training Data

Yet another adversarial ML attack:

Most deep neural networks are trained by stochastic gradient descent. Now “stochastic” is a fancy Greek word for “random”; it means that the training data are fed into the model in random order.

So what happens if the bad guys can cause the order to be not random? You guessed it—all bets are off. Suppose for example a company or a country wanted to have a credit-scoring system that’s secretly sexist, but still be able to pretend that its training was actually fair. Well, they could assemble a set of financial data that was representative of the whole population, but start the model’s training on ten rich men and ten poor women drawn from that set ­ then let initialisation bias do the rest of the work…

Continue reading Manipulating Machine-Learning Systems through the Order of the Training Data

Hiding Vulnerabilities in Source Code

Really interesting research demonstrating how to hide vulnerabilities in source code by manipulating how Unicode text is displayed. It’s really clever, and not the sort of attack one would normally think about.

From Ross Anderson’s blog:

We have discovered ways of manipulating the encoding of source code files so that human viewers and compilers see different logic. One particularly pernicious method uses Unicode directionality override characters to display code as an anagram of its true logic. We’ve verified that this attack works against C, C++, C#, JavaScript, Java, Rust, Go, and Python, and suspect that it will work against most other modern languages…

Continue reading Hiding Vulnerabilities in Source Code

Open Source Does Not Equal Secure

Way back in 1999, I wrote about open-source software:

First, simply publishing the code does not automatically mean that people will examine it for security flaws. Security researchers are fickle and busy people. They do not have the time to examine e… Continue reading Open Source Does Not Equal Secure