Leaked GitHub Python Token

Here’s a disaster that didn’t happen:

Cybersecurity researchers from JFrog recently discovered a GitHub Personal Access Token in a public Docker container hosted on Docker Hub, which granted elevated access to the GitHub repositories of the Python language, Python Package Index (PyPI), and the Python Software Foundation (PSF).

JFrog discussed what could have happened:

The implications of someone finding this leaked token could be extremely severe. The holder of such a token would have had administrator access to all of Python’s, PyPI’s and Python Software Foundation’s repositories, supposedly making it possible to carry out an extremely large scale supply chain attack…

Continue reading Leaked GitHub Python Token

Code Written with AI Assistants Is Less Secure

Interesting research: “Do Users Write More Insecure Code with AI Assistants?“:

Abstract: We conduct the first large-scale user study examining how users interact with an AI Code assistant to solve a variety of security related tasks across different programming languages. Overall, we find that participants who had access to an AI assistant based on OpenAI’s codex-davinci-002 model wrote significantly less secure code than those without access. Additionally, participants with access to an AI assistant were more likely to believe they wrote secure code than those without access to the AI assistant. Furthermore, we find that participants who trusted the AI less and engaged more with the language and format of their prompts (e.g. re-phrasing, adjusting temperature) provided code with fewer security vulnerabilities. Finally, in order to better inform the design of future AI-based Code assistants, we provide an in-depth analysis of participants’ language and interaction behavior, as well as release our user interface as an instrument to conduct similar studies in the future…

Continue reading Code Written with AI Assistants Is Less Secure

Existential Risk and the Fermi Paradox

We know that complexity is the worst enemy of security, because it makes attack easier and defense harder. This becomes catastrophic as the effects of that attack become greater.

In A Hacker’s Mind (coming in February 2023), I write:

Our societal systems, in general, may have grown fairer and more just over the centuries, but progress isn’t linear or equitable. The trajectory may appear to be upwards when viewed in hindsight, but from a more granular point of view there are a lot of ups and downs. It’s a “noisy” process.

Technology changes the amplitude of the noise. Those near-term ups and downs are getting more severe. And while that might not affect the long-term trajectories, they drastically affect all of us living in the short term. This is how the twentieth century could—statistically—both be the most peaceful in human history and also contain the most deadly wars…

Continue reading Existential Risk and the Fermi Paradox

Museum Security

Interesting interview:

Banks don’t take millions of dollars and put them in plastic bags and hang them on the wall so everybody can walk right up to them. But we do basically the same thing in museums and hang the assets right out on the wall. So it’s our job, then, to either use technology or develop technology that protects the art, to hire honest guards that are trainable and able to meet the challenge and alert and so forth. And we have to keep them alert because it’s the world’s most boring job. It might be great for you to go to a museum and see it for a day, but they stand in that same gallery year after year, and so they get mental fatigue. And so we have to rotate them around and give them responsibilities that keep them stimulated and keep them fresh…

Continue reading Museum Security

Security Analysis of Apple’s “Find My…” Protocol

Interesting research: “Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location Tracking System“:

Abstract: Overnight, Apple has turned its hundreds-of-million-device ecosystem into the world’s largest crowd-sourced location tracking network called offline finding (OF). OF leverages online finder devices to detect the presence of missing offline devices using Bluetooth and report an approximate location back to the owner via the Internet. While OF is not the first system of its kind, it is the first to commit to strong privacy goals. In particular, OF aims to ensure finder anonymity, untrackability of owner devices, and confidentiality of location reports. This paper presents the first comprehensive security and privacy analysis of OF. To this end, we recover the specifications of the closed-source OF protocols by means of reverse engineering. We experimentally show that unauthorized access to the location reports allows for accurate device tracking and retrieving a user’s top locations with an error in the order of 10 meters in urban areas. While we find that OF’s design achieves its privacy goals, we discover two distinct design and implementation flaws that can lead to a location correlation attack and unauthorized access to the location history of the past seven days, which could deanonymize users. Apple has partially addressed the issues following our responsible disclosure. Finally, we make our research artifacts publicly available…

Continue reading Security Analysis of Apple’s “Find My…” Protocol