3D Print Your Own Seiko-Style “Magic Lever” Energy Harvester

Back in 1956, Seiko created their “magic lever” as an integral part of self-winding mechanical watches, which were essentially mechanical energy harvesters. The magic lever is a type of ratcheting …read more Continue reading 3D Print Your Own Seiko-Style “Magic Lever” Energy Harvester

Hackaday Podcast 087: Sound-Shattering Gliders, Pressing Dashcam Buttons, and Ratcheting Up Time

Hackaday editors Mike Szczys and Elliot Williams dish up a hot slice of the week’s hardware hacks. We feature a lot of clocks on Hackaday, but few can compare to the mechanical engineering elegance of the band-saw-blade-based ratcheting clock we swoon over on this week’s show. We’ve found a superb …read more

Continue reading Hackaday Podcast 087: Sound-Shattering Gliders, Pressing Dashcam Buttons, and Ratcheting Up Time

Mechanisms: Cable Ties

Zip ties, Ty-Raps, cable ties; call them what you will, but it’s hard to imagine doing without these ubiquitous and useful devices. Along with duct tape and hot glue, they’re part of the triumvirate of fasteners used to solve nasty problems quickly and cheaply. They’re next up on the list of mechanisms we find fascinating, and as it turns out, there’s more to these devices than meets the eye.

The Well-Dressed Wiring Harness

Like so many products that we take for granted today, the cable tie was invented to solve problems in the aerospace industry. In the prewar years, airplanes …read more

Continue reading Mechanisms: Cable Ties

Roll Your Own Rotary Encoders

[miroslavus] hasn’t had much luck with rotary encoders. The parts he has tested from the usual sources have all been problematic either mechanically or electrically, resulting in poor performance in his projects. Even attempts to deal with the deficiencies in software didn’t help, so he did what any red-blooded hacker would do — he built his own rotary encoder from microswitches and 3D-printed parts.

We know what you’re thinking: [miroslavus] hasn’t built a true encoder. There’s no attempt to encode the angular position of the shaft, nor is any information about the speed or direction of the shaft’s rotation captured. …read more

Continue reading Roll Your Own Rotary Encoders

Rolling Robot With Two Motors, But None Are On the Wheels

This unusual 3D printed Rolling Robot by [ebaera] uses two tiny hobby servos for locomotion in an unexpected way. The motors drive the front wheel only indirectly, by moving two articulated arms in a reach-and-retract motion similar to a breaststroke. The arms are joined together at the front, where a ratcheting wheel rests underneath. When the arms extend, the wheel rolls forward freely. When the arms retract, the wheel’s ratchet locks and the rest of the body is pulled forward. It looks as though extending one arm more than the other provides for rudimentary steering.

The parts are all 3D …read more

Continue reading Rolling Robot With Two Motors, But None Are On the Wheels