Conductive Tape Current Capacity Comparison

The world of DIY circuits for STEM and wearables has a few options for conductors. Wire with Dupont connectors is a standard, as is adhesive copper tape. There’s also conductive nylon/steel thread or ribbon. Which you choose depends on your application, of course, but as a general rule wire is …read more

Continue reading Conductive Tape Current Capacity Comparison

Tie-Dyed Filament Sings With Color

Manufacturers dye all sorts of 3D printer filaments on their factory lines; why can’t we? [Richard] takes this idea one step further by creating his own custom multicolored reels of nylon. Printing with these reels produces a vibrant pattern that simply demands our attention and  begs us to ask: how on earth..?

[Richard’s] tie-dye adventure is cleanly documented on the blog.  He simply spools a reel of nylon together and dyes subsections of the spool with a different color. With the filament “paletted” to taste, parts pop of the printer with an eye-catching rib pattern of color.

It’s worth mentioning …read more

Continue reading Tie-Dyed Filament Sings With Color

One-key Keyboard is Exercise in Sub-millimeter Design

As [Glen] describes it, the only real goal in his decision to design his single-key USB keyboard was to see how small he could build a functional keyboard using a Cherry MX key switch, and every fraction of a millimeter counted. Making a one-key USB keyboard is one thing, but making it from scratch complete with form-fitting enclosure that’s easy to assemble required careful design, and luckily for all of us, [Glen] has documented it wonderfully. (Incidentally, Cherry MX switches come in a variety of qualities and features, the different models being identified by their color. [Glen] is using a …read more

Continue reading One-key Keyboard is Exercise in Sub-millimeter Design

One-key Keyboard is Exercise in Sub-millimeter Design

As [Glen] describes it, the only real goal in his decision to design his single-key USB keyboard was to see how small he could build a functional keyboard using a Cherry MX key switch, and every fraction of a millimeter counted. Making a one-key USB keyboard is one thing, but making it from scratch complete with form-fitting enclosure that’s easy to assemble required careful design, and luckily for all of us, [Glen] has documented it wonderfully. (Incidentally, Cherry MX switches come in a variety of qualities and features, the different models being identified by their color. [Glen] is using a …read more

Continue reading One-key Keyboard is Exercise in Sub-millimeter Design

Mechanisms: Velcro

As a species, we’ve done a pretty good job at inventing some useful devices. But as clever as we think we are, given sufficient time, natural selection will beat us at our game at almost every turn. So it makes sense that many of our best inventions are inspired by nature and the myriad ways life finds to get DNA from one generation to the next.

Velcro is one such design cribbed from nature, and the story behind this useful mechanism is a perfect example that a prepared mind, good observation skills, and a heck of a lot of perseverance …read more

Continue reading Mechanisms: Velcro

Mechanisms: Cable Ties

Zip ties, Ty-Raps, cable ties; call them what you will, but it’s hard to imagine doing without these ubiquitous and useful devices. Along with duct tape and hot glue, they’re part of the triumvirate of fasteners used to solve nasty problems quickly and cheaply. They’re next up on the list of mechanisms we find fascinating, and as it turns out, there’s more to these devices than meets the eye.

The Well-Dressed Wiring Harness

Like so many products that we take for granted today, the cable tie was invented to solve problems in the aerospace industry. In the prewar years, airplanes …read more

Continue reading Mechanisms: Cable Ties

Nylon Fibre Artificial Muscles — Powered by Lasers!

If only we had affordable artificial muscles, we might see rapid advances in prosthetic limbs, robots, exo-skeletons, implants, and more. With cost being one of the major barriers — in addition to replicating the marvel of our musculature that many of us take for granted — a workable solution seems a way off. A team of researchers at MIT present a potential answer to these problems by showing nylon fibres can be used as synthetic muscles.

Some polymer fibre materials have the curious property of increasing in  diameter while decreasing in length when heated. Taking advantage of this, the team …read more

Continue reading Nylon Fibre Artificial Muscles — Powered by Lasers!