Detecting Cars with an ESP8266 Magnetometer

Having a motorized gate on your driveway is great, but only if there’s an easy way to trigger it. [Andrew] says the gate at his parent’s place could only be controlled by manually pushing a button on the panel or with a dinky remote that didn’t have nearly the range …read more

Continue reading Detecting Cars with an ESP8266 Magnetometer

Test Ideas Now With Sensors Already In Your Pocket

When project inspiration strikes, we’d love to do some quick tests immediately to investigate feasibility. Sadly we’re usually far from our workbench and its collection of sensor modules. This is especially frustrating when the desired sensor is in the smartphone we’re holding, standing near whatever triggered the inspiration. We could download a compass app, or a bubble level app, or something similar to glimpse sensor activity. But if we’re going to download an app, consider Google’s Science Journal app.

It was designed to be an educational resource, turning a smartphone’s sensor array into a pocket laboratory instrument and notebook for …read more

Continue reading Test Ideas Now With Sensors Already In Your Pocket

Tell Time With a Reverse-Sundial Watch

[Xose Pérez] set out to make a sundial wristwatch by combining a magnetometer a small nylon bolt for the gnomon, but it doesn’t work like you’d think. Instead of using the magnetometer to point the sundial north, you angle the watch until the bolt’s shadow matches the white line on the PCB, and the ATmega328P computes the azimuth of the sun and determines the time thereby. To display the time he used one of those QDSP-6064 bubble displays, because sundials are retro.

His description of the project build includes a lot of fun anecdotes, like him attempting to solder the …read more

Continue reading Tell Time With a Reverse-Sundial Watch

Sense All the Things with a Synthetic Sensor

What will it take to make your house smarter than you? Judging from the price of smart appliances we see in the home centers these days, it’ll take buckets of cash. But what if you could make your home smarter — or at least more observant — with a few cheap, general purpose “supersensors” that watch your every move?

Sounds creepy, right? That’s what [Gierad Laput] and his team at the Carnegie Mellon Human-Computer Interaction Institute thought when they designed their broadband “synthetic sensor,” and it’s why they purposely omitted a camera from their design. But just about every other …read more

Continue reading Sense All the Things with a Synthetic Sensor

Your Arm Is The Ideal Controller

With interest and accessibility to both wearable tech and virtual reality approaching an all-time high, three students from Cornell University — [Daryl Sew, Emma Wang, and Zachary Zimmerman] — seek to turn your body into the perfect controller.

That is the end goal, at least. Their prototype consists of three Kionix tri-axis accelerometer, gyroscope and magnetometer sensors (at the hand, elbow, and shoulder) to trace the arm’s movement. Relying on a PC to do most of the computational heavy lifting, a PIC32 in a t-shirt canister — hey, it’s a prototype! — receives data from the three joint positions, transmitting …read more

Continue reading Your Arm Is The Ideal Controller

Navigation Thing: Four Days, Three Problems, and Fake Piezos

The “Navigation Thing“ was designed and built by [Jan Mrázek] as part of a night game activity for high school students during week-long seminar. A night-time path through a forest had stations with simple tasks, and the Navigation Thing used GPS, digital compass, a beeper, and a ring of RGB LEDs to provide a bit of “Wow factor” while guiding a group of students from one station to the next. The devices had a clear design direction:

“I wanted to build a device which a participant would find, insert batteries, and follow the beeping to find the next stop. Imagine

…read more

Continue reading Navigation Thing: Four Days, Three Problems, and Fake Piezos

Automatic Resistance: Resistors Controlled by the Environment

Resistors are one of the fundamental components used in electronic circuits. They do one thing: resist the flow of electrical current. There is more than one way to skin a cat, and there is more than one way for a resistor to work. In previous articles I talked about fixed value resistors as well as variable resistors.

There is one other major group of variable resistors which I didn’t get into: resistors which change value without human intervention. These change by environmental means: temperature, voltage, light, magnetic fields and physical strain. They’re commonly used for automation and without them our …read more

Continue reading Automatic Resistance: Resistors Controlled by the Environment