Livestreaming Backpack Takes Streaming On-The-Go

Anyone who’s anyone on the internet these days occasionally streams content online. Whether that’s the occasional livestream on YouTube or an every day video game session on Twitch, it’s definitely …read more Continue reading Livestreaming Backpack Takes Streaming On-The-Go

A Crash Course In Thermodynamics For Electrical Engineers

It’s a simple fact that, in this universe at least, energy is always conserved. For the typical electronic system, this means that the energy put into the system must eventually leave the system. Typically, much of this energy will leave a system as heat, and managing this properly is key …read more

Continue reading A Crash Course In Thermodynamics For Electrical Engineers

Liquid Cooling Keeps This Electronic Load’s MOSFETs From Burning

Problem: your electronic load works fine, except for the occasional MOSFET bursting into flames. Solution: do what [tbladykas] did, and build a water-cooled electronic load.

One can quibble that perhaps there are other ways to go about preventing your MOSFETs from burning, including changes to the electrical design. But he …read more

Continue reading Liquid Cooling Keeps This Electronic Load’s MOSFETs From Burning

Extreme Pi Overclocking With Mineral Oil

Liquid cooling is a popular way to get a bit of extra performance out of your computer. Usually this is done in desktops, where a special heat sink with copper tubing is glued to the CPU, and the copper tubes are plumbed to a radiator. If you want dive deeper into the world of liquid cooling, you can alternatively submerge your entire computer in a bath of mineral oil like [Timm] has done.

The computer in question here is a Raspberry Pi, and it’s being housed in a purpose-built laser cut acrylic case full of mineral oil. As a SoC, …read more

Continue reading Extreme Pi Overclocking With Mineral Oil

Measuring The Cooling Effect Of Transformer Oil

Transformer oil has long served two purposes, cooling and insulating. The large, steel encased transformers we see connected to the electrical grid are filled with transformer oil which is circulated through radiator fins for dumping heat to the surrounding air. In the hacker world, we use transformer oil for cooling RF dummy loads and insulating high voltage components. [GreatScott] decided to do some tests of his own to see just how good it is for cooling circuits.

He started with testing canola oil but found that it breaks down from contact with air and becomes rancid. So he purchased some …read more

Continue reading Measuring The Cooling Effect Of Transformer Oil

Chilling a Hot Camera

[Eric]’s camera has a problem. It overheats. While this wouldn’t be an issue if [Eric] was taking one picture at a time, this camera also has a video mode, which is supposed to take several pictures in a row, one right after the other. While a camera that overheats when it’s used is probably evidence of poor thermal engineering, the solution is extremely simple: strap a gigantic heat sink to the back. That’s exactly what [Eric] did, and the finished product looks great.

The heatsink chosen for this application is a gigantic cube of aluminum, most likely taken from an …read more

Continue reading Chilling a Hot Camera

Chilling a Hot Camera

[Eric]’s camera has a problem. It overheats. While this wouldn’t be an issue if [Eric] was taking one picture at a time, this camera also has a video mode, which is supposed to take several pictures in a row, one right after the other. While a camera that overheats when it’s used is probably evidence of poor thermal engineering, the solution is extremely simple: strap a gigantic heat sink to the back. That’s exactly what [Eric] did, and the finished product looks great.

The heatsink chosen for this application is a gigantic cube of aluminum, most likely taken from an …read more

Continue reading Chilling a Hot Camera

The Surface Area to Volume Ratio or Why Elephants Have Big Ears

There are very few things that are so far reaching across many different disciplines, ranging from biology to engineering, as is the relation of the surface area to the volume of a body. This is not a law, as Newton’s second one, or a theory as Darwin’s evolution theory. But it has consequences in a diverse set of situations. It explains why cells are the size they are, why some animals have a strange morphology, why flour explodes while wheat grains don’t and many other phenomena that we will explore in this article.

What Is SA:V?

All bodies have a …read more

Continue reading The Surface Area to Volume Ratio or Why Elephants Have Big Ears