Ice, Ice, Radio Uses FPGA

Building a software defined radio (SDR) involves many trades offs. But one of the most fundamental is should you use an FPGA or a CPU to do the processing. Of course, if you are piping data to a PC, the answer is probably a CPU. But if you are doing the whole system, it is a vexing choice. The FPGA can handle lots of data all at one time but is somewhat more difficult to develop and modify. CPUs using software are flexible–especially for coding user interfaces, networking connections, and the like) but don’t always have enough horsepower to cope …read more

Continue reading Ice, Ice, Radio Uses FPGA

The Impressive Z80 Computer With The Unfortunate Name

We’ve seen a lot of retro builds around the Z80. Not many are as neatly done or as well-documented as [dekeNukem’s] FAP80 project. Before you rush to the comments to make the obvious joke, we’ll tell you that everyone has already made up their own variation of the same joke. We’ll also tell you the name is a cross between an old design from [Steve Ciarcia] called the ZAP80 and a reference to the FPGA used in this device.

[dekeNukem] says his goal was to create a Z80 computer without all the baggage of using period-correct support chips. You can …read more

Continue reading The Impressive Z80 Computer With The Unfortunate Name

The Impressive Z80 Computer With The Unfortunate Name

We’ve seen a lot of retro builds around the Z80. Not many are as neatly done or as well-documented as [dekeNukem’s] FAP80 project. Before you rush to the comments to make the obvious joke, we’ll tell you that everyone has already made up their own variation of the same joke. We’ll also tell you the name is a cross between an old design from [Steve Ciarcia] called the ZAP80 and a reference to the FPGA used in this device.

[dekeNukem] says his goal was to create a Z80 computer without all the baggage of using period-correct support chips. You can …read more

Continue reading The Impressive Z80 Computer With The Unfortunate Name

Persistence Of Vision Death Star

Death Stars were destroyed twice in the Star Wars movies and yet one still lives on in this 168 LED persistence of vision globe made by an MEng group at the University of Leeds in the UK. While Death Stars are in high demand, they mounted it on an axis tilted 23.4° (the same as the Earth) so that they can show the Earth overlaid with weather information, the ISS position, or a world clock.

More details are available on their system overview page but briefly: rotating inside and mounted on the axis is a Raspberry Pi sending either video …read more

Continue reading Persistence Of Vision Death Star

FPGA Computer Covers A to Z

[F4HDK] calls his new computer A2Z because he built everything from scratch (literally, from A to Z). Well, strictly speaking, he did start with an FPGA, but you have to have some foundation. The core CPU is a 16-bit RISC processor with a 24-bit address bus and a 128-word cache. The computer sports 2 megabytes of RAM, a boot ROM, a VGA port and keyboard, and some other useful I/O. The CPU development uses Verilog.

Software-wise, the computer has a simple operating system, a filesystem, and basic programs like a text editor and an image viewer. Development software includes an …read more

Continue reading FPGA Computer Covers A to Z

Retro ZX Spectrum Lives a Spartan Existence

FPGAs (like Xilinx’s Spartan series) are great building blocks. They often remind us of the 100-in-1 electronic kits we used to get as kids. Lots of components you can mix and match to make nearly anything. However, like a bare microcontroller, they usually don’t have much in the way of peripheral devices. So the secret sauce is what components you can surround the chip with.

If you are interested in retro computing, you ought to have a look at the ZX-Uno board. It hosts a Spartan 6 FPGA. They are for sale, but the design is open source and all …read more

Continue reading Retro ZX Spectrum Lives a Spartan Existence

Retro ZX Spectrum Lives a Spartan Existence

FPGAs (like Xilinx’s Spartan series) are great building blocks. They often remind us of the 100-in-1 electronic kits we used to get as kids. Lots of components you can mix and match to make nearly anything. However, like a bare microcontroller, they usually don’t have much in the way of peripheral devices. So the secret sauce is what components you can surround the chip with.

If you are interested in retro computing, you ought to have a look at the ZX-Uno board. It hosts a Spartan 6 FPGA. They are for sale, but the design is open source and all …read more

Continue reading Retro ZX Spectrum Lives a Spartan Existence

Custom Zynq/CMOS Camera Unlocks Astrophotography

Around here we love technology for its own sake. But we have to admit, most people are interested in applications–what can the technology do? Those people often have the best projects. After all, there’s only so many blinking LED projects you can look at before you want something more.

[Landingfield] is interested in astrophotography. He was dismayed at the cost of commercial camera sensors suitable for work like this, so he decided he would create his own. Although he started thinking about it a few years ago, he started earnestly in early 2016.

The project uses a Nikon sensor and …read more

Continue reading Custom Zynq/CMOS Camera Unlocks Astrophotography

Amstrad on an FPGA

If you are from the United States and of a certain age, it is very likely you owned some form of Commodore computer. Outside the US, that same demographic was likely to own an Amstrad. The Z80-based computers were well known for game playing. [Freemac] implemented a working Amstrad CPC6128 using a Xilinx FPGA on a NEXYS2 demo board.

The wiki posting is a bit long, but it covers how to duplicate the feat, and also gives technical details about the design. It also outlines the development process used ranging from starting with a simple Z80 emulation and moving on …read more

Continue reading Amstrad on an FPGA

Gravity Simulations With An FPGA

Gravity can be a difficult thing to simulate effectively on a traditional CPU. The amount of calculation required increases exponentially with the number of particles in the simulation. This is an application perfect for parallel processing.

For their final project in ECE5760 at Cornell, [Mark Eiding] and [Brian Curless] decided to use an FPGA to rapidly process gravitational calculations. This allows them to simulate a thousand particles at up to 10 frames per second. With every particle having an attraction to every other, this works out to an astonishing 1 million inverse-square calculations per frame!

The team used an Altera …read more

Continue reading Gravity Simulations With An FPGA