Learn Verilog In Your Browser

We are big fans of tools in the browser for education. You have a consistent environment maintained by someone else, you don’t have to install anything, and you can work from any computer you happen to find yourself. The HDLBits site has a great set of Verilog “exams” that would be a big help to anyone trying to learn or brush up on their Verilog skills.

The site offers a range of topics that go from the silly (output a constant 1 or 0) to full-blown state machines and testbenches. The site isn’t tutorial in nature, instead it offers a …read more

Continue reading Learn Verilog In Your Browser

Using an FPGA to Navigate China’s Railroads

If you’re headed over to mainland China as a tourist, it’s possible to get to most of the country by rail. China is huge though, about the same size as the United States and more than twice the size of the European Union. Traveling that much area isn’t particularly easy. There are over 300 train terminals in China, and finding the quickest route somewhere is not obvious at all. This is an engineering challenge waiting to be solve, and luckily some of the students at Cornell Engineering have taken a stab at efficiently navigating China’s rail system using an FPGA. …read more

Continue reading Using an FPGA to Navigate China’s Railroads

Turning A Tiny FLIR Into An Action Cam With FPGAs

FLIR are making some really great miniature thermal cameras these days, designed for applications such as self-driving cars, and tools that help keep firefighters safe. That’s great and all, but these thermal cameras are so cool, you really just want to play with one. That’s what [greg] was thinking when he designed a PCB backpack that captures thermal images from a FLIR Boson and stores it on an SD card. It’s a thermal action cam, and an impressive bit of FPGA development, too.

The FLIR product in question is a Boson 640, an impressive little camera that records in 640×512 …read more

Continue reading Turning A Tiny FLIR Into An Action Cam With FPGAs

CORDIC Brings Math To FPGA Designs

We are always excited when we see [Hamster] post an FPGA project, because it is usually something good. His latest post doesn’t disappoint and shows how he uses the CORDIC algorithm to generate very precise sine and cosine waves in VHDL. CORDIC (Coordinate Rotation Digital Computer; sometimes known as Volder’s algorithm) is a standard way to compute hyperbolic and trigonometric functions. What’s nice is that the algorithm only requires addition, subtraction, bit shifts, and a lookup table with an entry for each bit of precision you want. Of course, if you have addition and negative numbers, you already have subtraction. …read more

Continue reading CORDIC Brings Math To FPGA Designs

How to Add UART to Your FPGA Projects

Being able to communicate between a host computer and a project is often a key requirement, and for FPGA projects that is easily done by adding a submodule like a UART. A Universal Asynchronous Receiver-Transmitter is the hardware that facilitates communications with a serial port, so you can send commands from a computer and get messages in return.

Last week I wrote about an example POV project that’s a good example for learn. It was both non-trivial and used the board’s features nicely. But it has the message hard coded into the Verilog which means you need to rebuild the …read more

Continue reading How to Add UART to Your FPGA Projects

Visualizing Verilog Simulation

You don’t usually think of simulating Verilog code — usually for an FPGA — as a visual process. You write a test script colloquially known as a test bench and run your simulation. You might get some printed information or you might get a graphical result by dumping a waveform, but you don’t usually see the circuit. A new site combines Yosys and a Javascript-based logic simulator to let you visualize and simulate Verilog in your browser. It is a work in progress on GitHub, so you might find a few hiccups like we did, but it is still an …read more

Continue reading Visualizing Verilog Simulation

Learn FPGA with this Persistence of Vision Hack

Everybody wants to give FPGA development a try and here’s a great way to get into it. You can build your own Persistence of Vision display using a $30 dev board. It’s a fun project, and you’ll learn quite a bit about designing for an FPGA, as well as using the Quartus design software.

The inspiration for this article comes from [vpecanins] who did an example project where you wave the board back and forth and a message appears in mid air. This uses the MAX1000, a pretty powerful yet odd FPGA board for about $30. It contains an Intel …read more

Continue reading Learn FPGA with this Persistence of Vision Hack

Cheap FPGA Board Roundup

There’s never been a better time to get into using FPGAs. Nearly all vendors have some level of free software and while boards haven’t gotten as cheap as ones with microcontrollers, the prices are way down. [Joel Williams] was frustrated when his board of choice became unavailable, so he decided to compile data on as many cheap boards as he could.

[Joel] covers the major vendors like Intel and Altera. But he also includes information on Actel, Cypress, and Lattice. While the list probably isn’t comprehensive, it is a lot of information about many popular boards. The notes are helpful …read more

Continue reading Cheap FPGA Board Roundup

Rewinding Live Radio

Even though it’s now a forgotten afterthought in the history of broadcasting technology, we often forget how innovative the TiVo was. All this set-top box did was connect a hard drive to a cable box, but the power was incredible: you could pause live TV. You could record shows. You could rewind TV. It was an incredible capability, that no one had ever seen before. Of course, between Amazon and Netflix and YouTube, no one watches TV anymore, and all those platforms have a pause button, but the TiVO was awesome.

There is one bit of broadcasting that still exists. …read more

Continue reading Rewinding Live Radio

Build a Fun CPU in Your Browser

A rite of passage for a digital designer is to build a CPU. That may seem a formidable task and if you are thinking of building a modern CPU like the one in your PC, it is. However, a simple CPU is well within the reach of anyone who can sling some logic gates or HDL. We’ve even seen CPUs built in Minecraft. Now you can play nandgame and build a CPU step-by-step in your browser.

The game is based on the popular From NAND to Tetris site. True to the name you start out with a single NAND gate …read more

Continue reading Build a Fun CPU in Your Browser