Hackaday Prize 2022: A Not-So-Smart Spot Welder

An exploded diagram of the spot welder. Shown are the capacitor bank, trigger, 12 V relay, DC power input, power out, step up converter, voltmeter, industrial SCR module, and capacitor bank.

DIY spot welders often use high-powered components that can be a bit frightening, given the potential for dangerous malfunctions. [Wojciech “Adalbert” J.] designed his capacitive discharge spot welder to be …read more Continue reading Hackaday Prize 2022: A Not-So-Smart Spot Welder

Printed Jig is a Welding Rig

[NixieGuy] was scheming to build robots with cable-driven joints when the pandemic hit. Now that component sourcing is scarce, he’s had to get creative when it comes to continuous cables. These cables need to be as seamless as possible to avoid getting caught on the pulleys, so [Nixie] came up …read more

Continue reading Printed Jig is a Welding Rig

Building a Portable Solar-Powered Spot Welder: Nearly Practical!

Last time, we covered storing and charging a 3000 Farad supercapacitor to build a solar-powered, portable spot welder. Since then, I’ve made some improvements to the charging circuit and gotten it running. To recap, the charger uses a DC-DC buck converter to convert a range of DC voltages down to 2.6 V. It can supply a maximum of 5 A though, and the supercapacitor will draw more than that if allowed to.

After some failed attempts, I had solved that by passing the buck converter output through a salvaged power MOSFET. A spare NodeMCU module provided pulse width modulated output …read more

Continue reading Building a Portable Solar-Powered Spot Welder: Nearly Practical!

Building a Portable Solar Powered Spot Welder: Charging Supercapacitors

Before Lunar New Year, I had ordered two 3000 F, 2.7 V supercapacitors from China for about $4 each. I don’t actually remember why, but they arrived (unexpectedly) just before the holiday.

Supercapacitors (often called ultracapacitors) fill a niche somewhere between rechargeable lithium cells and ordinary capacitors. Ordinary capacitors have a low energy density, but a high power density: they can store and release energy very quickly. Lithium cells store a lot of energy, but charge and discharge at a comparatively low rate. By weight, supercapacitors store on the order of ten times less energy than lithium cells, and can …read more

Continue reading Building a Portable Solar Powered Spot Welder: Charging Supercapacitors