Model Extraction from Neural Networks

A new paper, “Polynomial Time Cryptanalytic Extraction of Neural Network Models,” by Adi Shamir and others, uses ideas from differential cryptanalysis to extract the weights inside a neural network using specific queries and their results. This is much more theoretical than practical, but it’s a really interesting result.

Abstract:

Billions of dollars and countless GPU hours are currently spent on training Deep Neural Networks (DNNs) for a variety of tasks. Thus, it is essential to determine the difficulty of extracting all the parameters of such neural networks when given access to their black-box implementations. Many versions of this problem have been studied over the last 30 years, and the best current attack on ReLU-based deep neural networks was presented at Crypto’20 by Carlini, Jagielski, and Mironov. It resembles a differential chosen plaintext attack on a cryptosystem, which has a secret key embedded in its black-box implementation and requires a polynomial number of queries but an exponential amount of time (as a function of the number of neurons). In this paper, we improve this attack by developing several new techniques that enable us to extract with arbitrarily high precision all the real-valued parameters of a ReLU-based DNN using a polynomial number of queries and a polynomial amount of time. We demonstrate its practical efficiency by applying it to a full-sized neural network for classifying the CIFAR10 dataset, which has 3072 inputs, 8 hidden layers with 256 neurons each, and about 1.2 million neuronal parameters. An attack following the approach by Carlini et al. requires an exhaustive search over 2^256 possibilities. Our attack replaces this with our new techniques, which require only 30 minutes on a 256-core computer…

Continue reading Model Extraction from Neural Networks

Using LLMs to Exploit Vulnerabilities

Interesting research: “Teams of LLM Agents can Exploit Zero-Day Vulnerabilities.”

Abstract: LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities).

In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 15 real-world vulnerabilities and show that our team of agents improve over prior work by up to 4.5×…

Continue reading Using LLMs to Exploit Vulnerabilities

LLMs Acting Deceptively

New research: “Deception abilities emerged in large language models“:

Abstract: Large language models (LLMs) are currently at the forefront of intertwining AI systems with human communication and everyday life. Thus, aligning them with human values is of great importance. However, given the steady increase in reasoning abilities, future LLMs are under suspicion of becoming able to deceive human operators and utilizing this ability to bypass monitoring efforts. As a prerequisite to this, LLMs need to possess a conceptual understanding of deception strategies. This study reveals that such strategies emerged in state-of-the-art LLMs, but were nonexistent in earlier LLMs. We conduct a series of experiments showing that state-of-the-art LLMs are able to understand and induce false beliefs in other agents, that their performance in complex deception scenarios can be amplified utilizing chain-of-thought reasoning, and that eliciting Machiavellianism in LLMs can trigger misaligned deceptive behavior. GPT-4, for instance, exhibits deceptive behavior in simple test scenarios 99.16% of the time (P < 0.001). In complex second-order deception test scenarios where the aim is to mislead someone who expects to be deceived, GPT-4 resorts to deceptive behavior 71.46% of the time (P < 0.001) when augmented with chain-of-thought reasoning. In sum, revealing hitherto unknown machine behavior in LLMs, our study contributes to the nascent field of machine psychology…

Continue reading LLMs Acting Deceptively

Exploiting Mistyped URLs

Interesting research: “Hyperlink Hijacking: Exploiting Erroneous URL Links to Phantom Domains“:

Abstract: Web users often follow hyperlinks hastily, expecting them to be correctly programmed. However, it is possible those links contain typos or other mistakes. By discovering active but erroneous hyperlinks, a malicious actor can spoof a website or service, impersonating the expected content and phishing private information. In “typosquatting,” misspellings of common domains are registered to exploit errors when users mistype a web address. Yet, no prior research has been dedicated to situations where the linking errors of web publishers (i.e. developers and content contributors) propagate to users. We hypothesize that these “hijackable hyperlinks” exist in large quantities with the potential to generate substantial traffic. Analyzing large-scale crawls of the web using high-performance computing, we show the web currently contains active links to more than 572,000 dot-com domains that have never been registered, what we term ‘phantom domains.’ Registering 51 of these, we see 88% of phantom domains exceeding the traffic of a control domain, with up to 10 times more visits. Our analysis shows that these links exist due to 17 common publisher error modes, with the phantom domains they point to free for anyone to purchase and exploit for under $20, representing a low barrier to entry for potential attackers…

Continue reading Exploiting Mistyped URLs

Privacy Implications of Tracking Wireless Access Points

Brian Krebs reports on research into geolocating routers:

Apple and the satellite-based broadband service Starlink each recently took steps to address new research into the potential security and privacy implications of how their services geolocate devices. Researchers from the University of Maryland say they relied on publicly available data from Apple to track the location of billions of devices globally—including non-Apple devices like Starlink systems—and found they could use this data to monitor the destruction of Gaza, as well as the movements and in many cases identities of Russian and Ukrainian troops…

Continue reading Privacy Implications of Tracking Wireless Access Points

On the Zero-Day Market

New paper: “Zero Progress on Zero Days: How the Last Ten Years Created the Modern Spyware Market“:

Abstract: Spyware makes surveillance simple. The last ten years have seen a global market emerge for ready-made software that lets governments surveil their citizens and foreign adversaries alike and to do so more easily than when such work required tradecraft. The last ten years have also been marked by stark failures to control spyware and its precursors and components. This Article accounts for and critiques these failures, providing a socio-technical history since 2014, particularly focusing on the conversation about trade in zero-day vulnerabilities and exploits. Second, this Article applies lessons from these failures to guide regulatory efforts going forward. While recognizing that controlling this trade is difficult, I argue countries should focus on building and strengthening multilateral coalitions of the willing, rather than on strong-arming existing multilateral institutions into working on the problem. Individually, countries should focus on export controls and other sanctions that target specific bad actors, rather than focusing on restricting particular technologies. Last, I continue to call for transparency as a key part of oversight of domestic governments’ use of spyware and related components…

Continue reading On the Zero-Day Market

New Attack Against Self-Driving Car AI

This is another attack that convinces the AI to ignore road signs:

Due to the way CMOS cameras operate, rapidly changing light from fast flashing diodes can be used to vary the color. For example, the shade of red on a stop sign could look different on each line depending on the time between the diode flash and the line capture.

The result is the camera capturing an image full of lines that don’t quite match each other. The information is cropped and sent to the classifier, usually based on deep neural networks, for interpretation. Because it’s full of lines that don’t match, the classifier doesn’t recognize the image as a traffic sign…

Continue reading New Attack Against Self-Driving Car AI

Dan Solove on Privacy Regulation

Law professor Dan Solove has a new article on privacy regulation. In his email to me, he writes: “I’ve been pondering privacy consent for more than a decade, and I think I finally made a breakthrough with this article.” His mini-abstract:

In this Article I argue that most of the time, privacy consent is fictitious. Instead of futile efforts to try to turn privacy consent from fiction to fact, the better approach is to lean into the fictions. The law can’t stop privacy consent from being a fairy tale, but the law can ensure that the story ends well. I argue that privacy consent should confer less legitimacy and power and that it be backstopped by a set of duties on organizations that process personal data based on consent…

Continue reading Dan Solove on Privacy Regulation