Breaking 256-bit Elliptic Curve Encryption with a Quantum Computer

Researchers have calculated the quantum computer size necessary to break 256-bit elliptic curve public-key cryptography:

Finally, we calculate the number of physical qubits required to break the 256-bit elliptic curve encryption of keys in the Bitcoin network within the small available time frame in which it would actually pose a threat to do so. It would require 317 × 106 physical qubits to break the encryption within one hour using the surface code, a code cycle time of 1 μs, a reaction time of 10 μs, and a physical gate error of 10-3. To instead break the encryption within one day, it would require 13 × 10…

Continue reading Breaking 256-bit Elliptic Curve Encryption with a Quantum Computer

Using EM Waves to Detect Malware

I don’t even know what I think about this. Researchers have developed a malware detection system that uses EM waves: “Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware Classification.”

Abstract: The Internet of Things (IoT) is constituted of devices that are exponentially growing in number and in complexity. They use numerous customized firmware and hardware, without taking into consideration security issues, which make them a target for cybercriminals, especially malware authors.

We will present a novel approach of using side channel information to identify the kinds of threats that are targeting the device. Using our approach, a malware analyst is able to obtain precise knowledge about malware type and identity, even in the presence of obfuscation techniques which may prevent static or symbolic binary analysis. We recorded 100,000 measurement traces from an IoT device infected by various in-the-wild malware samples and realistic benign activity. Our method does not require any modification on the target device. Thus, it can be deployed independently from the resources available without any overhead. Moreover, our approach has the advantage that it can hardly be detected and evaded by the malware authors. In our experiments, we were able to predict three generic malware types (and one benign class) with an accuracy of 99.82%. Even more, our results show that we are able to classify altered malware samples with unseen obfuscation techniques during the training phase, and to determine what kind of obfuscations were applied to the binary, which makes our approach particularly useful for malware analysts…

Continue reading Using EM Waves to Detect Malware

Friday Squid Blogging: Deep-Dwelling Squid

We have discovered a squid — (Oegopsida, Magnapinnidae, Magnapinna sp.) — that lives at 6,000 meters deep.

:They’re really weird,” says Vecchione. “They drift along with their arms spread out and these really long, skinny, spaghetti-like extensions dangling down underneath them.” Microscopic suckers on those filaments enable the squid to capture their prey.

But the squid that Jamieson and Vecchione saw in the footage captured 6,212 meters below the ocean’s surface is a small one. They estimate that its mantle measured 10 centimeters long — ­about a third the size of the largest-known magnapinnid. And the characteristically long extensions observed on other magnapinnids were nowhere to be seen in the video. That could mean, says Vecchione, that this bigfin squid was a juvenile…

Continue reading Friday Squid Blogging: Deep-Dwelling Squid

Hiding Vulnerabilities in Source Code

Really interesting research demonstrating how to hide vulnerabilities in source code by manipulating how Unicode text is displayed. It’s really clever, and not the sort of attack one would normally think about.

From Ross Anderson’s blog:

We have discovered ways of manipulating the encoding of source code files so that human viewers and compilers see different logic. One particularly pernicious method uses Unicode directionality override characters to display code as an anagram of its true logic. We’ve verified that this attack works against C, C++, C#, JavaScript, Java, Rust, Go, and Python, and suspect that it will work against most other modern languages…

Continue reading Hiding Vulnerabilities in Source Code

Security Risks of Client-Side Scanning

Even before Apple made its announcement, law enforcement shifted their battle for backdoors to client-side scanning. The idea is that they wouldn’t touch the cryptography, but instead eavesdrop on communications and systems before encryption or after decryption. It’s not a cryptographic backdoor, but it’s still a backdoor — and brings with it all the insecurities of a backdoor.

I’m part of a group of cryptographers that has just published a paper discussing the security risks of such a system. (It’s substantially the same group that wrote a similar paper about …

Continue reading Security Risks of Client-Side Scanning

Recovering Real Faces from Face-Generation ML System

New paper: “This Person (Probably) Exists. Identity Membership Attacks Against GAN Generated Faces.

Abstract: Recently, generative adversarial networks (GANs) have achieved stunning realism, fooling even human observers. Indeed, the popular tongue-in-cheek website http://thispersondoesnotexist.com, taunts users with GAN generated images that seem too real to believe. On the other hand, GANs do leak information about their training data, as evidenced by membership attacks recently demonstrated in the literature. In this work, we challenge the assumption that GAN faces really are novel creations, by constructing a successful membership attack of a new kind. Unlike previous works, our attack can accurately discern samples sharing the same identity as training samples without being the same samples. We demonstrate the interest of our attack across several popular face datasets and GAN training procedures. Notably, we show that even in the presence of significant dataset diversity, an over represented person can pose a privacy concern…

Continue reading Recovering Real Faces from Face-Generation ML System

Identifying Computer-Generated Faces

It’s the eyes:

The researchers note that in many cases, users can simply zoom in on the eyes of a person they suspect may not be real to spot the pupil irregularities. They also note that it would not be difficult to write software to spot such errors and for social media sites to use it to remove such content. Unfortunately, they also note that now that such irregularities have been identified, the people creating the fake pictures can simply add a feature to ensure the roundness of pupils.

And the arms race continues….

Research paper.

Continue reading Identifying Computer-Generated Faces