The Sol-1: A 16-bit Computer In 74HC Logic With C Compiler And Unix-like OS

While the concept of a computer system implemented in discrete logic ICs is by itself not among the most original ideas, the way some machines are executed certainly makes them …read more Continue reading The Sol-1: A 16-bit Computer In 74HC Logic With C Compiler And Unix-like OS

A TTL CPU, Minimising Its Chip Count

By now we should all be used to the astonishing variety of CPUs that have come our way created from discrete logic chips. We’ve seen everything from the familiar Von Neumann architectures to RISC and ever transport-triggered architecture done in 74 TTL derivatives, and fresh designs remain a popular project …read more

Continue reading A TTL CPU, Minimising Its Chip Count

Afroman Makes A UHF Oscillator From A Potato

If you have ever worked with simple logic gates, there is a good chance that at some point you will have built a ring oscillator from a chain of inverters. With the addition of a resistor and a capacitor, you can easily make a square wave oscillator up into the megahertz range with standard logic chips.

[Afroman] received some rather special logic chips, from an unexpectedly named company, Potato Semiconductor. They specialise in making versions of common 74 series logic that smash the usual 100+ MHz barrier of the faster conventional 74 series chips, and extend their bandwidth up to …read more

Continue reading Afroman Makes A UHF Oscillator From A Potato

Afroman Makes A UHF Oscillator From A Potato

If you have ever worked with simple logic gates, there is a good chance that at some point you will have built a ring oscillator from a chain of inverters. With the addition of a resistor and a capacitor, you can easily make a square wave oscillator up into the megahertz range with standard logic chips.

[Afroman] received some rather special logic chips, from an unexpectedly named company, Potato Semiconductor. They specialise in making versions of common 74 series logic that smash the usual 100+ MHz barrier of the faster conventional 74 series chips, and extend their bandwidth up to …read more

Continue reading Afroman Makes A UHF Oscillator From A Potato

An 8-Bit Transport Triggered Architecture CPU in TTL

When we are introduced to the internals of a microprocessor, it is most likely that we will be shown something like one of the first generation of 8-bit CPUs from the 1970s. There will be the familiar group of registers and counters, an arithmetic and logic unit (ALU), and an instruction decoder with associated control logic. A complex instruction set causes the decoder to marshal registers and ALU to perform all the various functions in the right order. CPUs may have moved on in many ways since the 1970s, but the block diagram of an 8080 or similar still provides …read more

Continue reading An 8-Bit Transport Triggered Architecture CPU in TTL

The Fastest Rise Time In The West: Making A Truly Quick Pulse Edge

When we are taught about oscillators as newbie engineers, we are shown a variety of waveforms on an oscilloscope or in a textbook. This is a sine wave, they say, this is a sawtooth, this is a square wave, and so on. We’re taught to look at the lines on the screen as idealised, a square wave is truly square, and the transition from low to high voltage and back again is instantaneous.

In most cases this assumption is harmless. If we look into the subject a little deeper we learn that what seemed an instantaneous cliff-face is in fact …read more

Continue reading The Fastest Rise Time In The West: Making A Truly Quick Pulse Edge