Hackaday Prize Entry: You Can Tune A Guitar, But Can You Reference REO Speedwagon?

Just for a second, let’s perform a little engineering-based thought experiment. Let’s design a guitar tuner. First up, you’ll need a 1/4″ input, and some op-amps to get that signal into a microcontroller. In the microcontroller, you’re going to be doing some FFT. If you’re really fancy, you’ll have some lookup tables and an interface to switch between A440, maybe A430, and if you’re a huge nerd, C256. The interface is simple enough — just use a seven-segment display and a few LEDs to tell the user what note they’re on and how on-pitch they are. All in all, the …read more

Continue reading Hackaday Prize Entry: You Can Tune A Guitar, But Can You Reference REO Speedwagon?

Hackaday Prize Entry: SoleSense for Balance Therapy

Rehabilitating brain injuries where a patient’s sense of balance has been compromised is no easy task. Current solutions only trigger when the patient reaches a threshold and by then, it may already be too late for a graceful recovery. [Simon Merrett]’s SoleSense is being designed to give continuous feedback like a stock humans innate sense of balance. Therapists hope this will aid recovery by more closely imitating what most of us grew up with.

SoleSense relies on capacitive sensors arranged under the feet to know where the patients are placing their weight. [OSHPark] is providing the first round of flexible …read more

Continue reading Hackaday Prize Entry: SoleSense for Balance Therapy

Hackaday Prize Entry: SoleSense for Balance Therapy

Rehabilitating brain injuries where a patient’s sense of balance has been compromised is no easy task. Current solutions only trigger when the patient reaches a threshold and by then, it may already be too late for a graceful recovery. [Simon Merrett]’s SoleSense is being designed to give continuous feedback like a stock humans innate sense of balance. Therapists hope this will aid recovery by more closely imitating what most of us grew up with.

SoleSense relies on capacitive sensors arranged under the feet to know where the patients are placing their weight. [OSHPark] is providing the first round of flexible …read more

Continue reading Hackaday Prize Entry: SoleSense for Balance Therapy

Hackaday Prize Entry: An Optical Power Meter

This is the type of crowd that’s famous for building their own test equipment. If you need a way to program a flash chip, don’t go out and buy one — you can just build one. Need a spectrum analyzer? You can build that out of copper clad board. For his Hackaday Prize entry, [oakkar7] is building an optical power meter, capable enough to do futzy fiber work, but still completely DIY.

When you get into networking and telecom connections that don’t begin with the letters ‘RJ’, you start to stumble upon SPF transceivers. These ‘small form factor pluggable’ devices …read more

Continue reading Hackaday Prize Entry: An Optical Power Meter

Hackaday Prize Entry: Room-Tracking Red Vines Flinger

[Vije Miller]’s Arduino Licorice Launcher is based on the simple and logical premise that one must always have a voice-activated Red Vines catapult in the workshop. When he calls out to the robot, it turns to aim at him and flings a piece of licorice at his head.

The chassis is CNCed out of quarter-inch MDF and the spring-loaded catapult arm is managed by two servos, one to tension the arm and one to secure it until it’s triggered.  Third and fourth servos aim the catapult and dispense another piece of licorice from the magazine. His robot adapts a radio …read more

Continue reading Hackaday Prize Entry: Room-Tracking Red Vines Flinger

Hackaday Prize Entry: Retrofit A Nokia

The Nokia 3210 is the greatest cell phone ever made. The battery lasted for days, custom color covers were available at every mall kiosk, it had the Snake game, and the chassis for this phone was finely crafted out of the crust of neutron stars. It was indestructible; it is the reason we now appreciate technology over more impermanent concepts like relationships and love.

For his Hackaday Prize entry, [Bastian] is bringing the Nokia 3210 into this century. He’s designing a circuit board with the same footprint, the same button layout, and a better screen that drops right into …read more

Continue reading Hackaday Prize Entry: Retrofit A Nokia

Hackaday Prize Entry: Retrofit A Nokia

The Nokia 3210 is the greatest cell phone ever made. The battery lasted for days, custom color covers were available at every mall kiosk, it had the Snake game, and the chassis for this phone was finely crafted out of the crust of neutron stars. It was indestructible; it is the reason we now appreciate technology over more impermanent concepts like relationships and love.

For his Hackaday Prize entry, [Bastian] is bringing the Nokia 3210 into this century. He’s designing a circuit board with the same footprint, the same button layout, and a better screen that drops right into …read more

Continue reading Hackaday Prize Entry: Retrofit A Nokia

These Twenty Assistive Technologies Projects Won $1000 In The Hackaday Prize

Today, we’re excited to announce the winners of the Assistive Technologies portion of The Hackaday Prize. In this round, we’re looking for projects that will help ensure a better quality of life for the disabled. Whether this is something that enhances learning, working, or daily living. These are the projects that turn ‘disability’ into ‘this ability’.

Hackaday is currently hosting the greatest hardware competition on Earth. We’re giving away hundreds of thousands of dollars to hardware creators to build the next great thing. Last week, we wrapped up the fourth of five challenges. It was all about showing a design …read more

Continue reading These Twenty Assistive Technologies Projects Won $1000 In The Hackaday Prize

Hackaday Prize Entry: IO, the Cardboard Computer

[Dr. Cockroach]’s goal was to build a four-bit computer out of recycled and repurposed junk. The resulting computer, called IO, consists of a single 555, around 230 PNP and NPN transistors, 230 diodes, and 460 resistors. It employs RISC architecture and operates at a speed of around 3 Hz.

He built IO out of cardboard for a good reason: he didn’t have a big budget for the project and he could get the material for free from his workplace. And because it was built so cheaply, he could also build it really big, allowing him to be able to really …read more

Continue reading Hackaday Prize Entry: IO, the Cardboard Computer

Hackaday Prize Entry: Smart Electric Bike Controller

One of the more interesting yet underrated technological advances of the last decade or so is big brushless motors and high-capacity batteries. This has brought us everything from quadcopters to good electric cars, usable cordless power tools, and of course electric bicycles. For his Hackaday Prize project, [marcus] is working on a very powerful electric bicycle controller. It can deliver 1000 Watts, it’s got Bluetooth, and there’s even an Android app for some neat diagnostics.

The specs for this eBike controller are pretty much what you would expect. It’s able to deliver a whole Kilowatt, can use 48 V batteries, …read more

Continue reading Hackaday Prize Entry: Smart Electric Bike Controller