Scientists can use data hidden in music to send Wi-Fi passwords to your phone

Researchers have developed a new method for transmitting data to smartphones – by embedding it in music. That means phones might one day receive Wi-Fi passwords or local information via tunes floating through the airwaves, with no perceptible… Continue reading Scientists can use data hidden in music to send Wi-Fi passwords to your phone

Pushing 3D Printed Wheels And Transmissions To The Limit

What do you do if you want a robot with great mobility? Walking is hard, and wheels are good enough, especially if you use the ‘wheels within wheels’ Mecanum setup. But you need torque, too. That’s what makes this entry into the Hackaday Prize so fantastic. It’s a Mecanum wheel …read more

Continue reading Pushing 3D Printed Wheels And Transmissions To The Limit

A Peek at the Mesmerizing Action of a Cycloidal Drive

Cycloidal drives are fascinating pieces of hardware, and we’ve seen them showing up in part due to their suitability for 3D printing. The open source robot arm makers [Haddington Dynamics] are among those playing with a cycloidal drive concept, and tucked away in their August 2018 newsletter was a link they shared to a short but mesmerizing video of a prototype, which we’ve embedded below.

A cycloidal drive has some similarities to both planetary gearing and strain-wave gears. In the image shown, the green shaft is the input and its rotation causes an eccentric motion in the yellow cycloidal disk. …read more

Continue reading A Peek at the Mesmerizing Action of a Cycloidal Drive

Mechanisms: Gears

Even before the Industrial Revolution, gears of one kind or another have been put to work both for and against us. From ancient water wheels and windmills that ground grain and pounded flax, to the drive trains that power machines of war from siege engines to main battle tanks, gears have been essential parts of almost every mechanical device ever built. The next installment of our series on Mechanisms will take a brief look at gears and their applications.

Spurring Progress Along

As is often the case, evolution is the best inventor, and a geared mechanism linking the rear legs …read more

Continue reading Mechanisms: Gears

3D Printed Transmission Invented Again; This Time Continuously Variable

We shouldn’t laugh, but we know the feeling very well. [Gear Down for What] invented a revolutionary transmission and fabricated it from scrap material when he was 16. Except he later found out the same design was the subject of a patent filed 14 years earlier. Dismayed he destroyed his prototype, but fast forward to today and he’s made a 3D model of a ratcheting continuously variable transmission. You can see a video of him explaining how it works below and put your own spin on the idea by grabbing the model from Thingiverse.

The model is just for demonstration …read more

Continue reading 3D Printed Transmission Invented Again; This Time Continuously Variable

New BitTorrent Flaw Puts Linux & Windows devices at risk of hacking

By Waqas
Tavis Ormandy, an IT security researcher at Google’s Project Zero
This is a post from HackRead.com Read the original post: New BitTorrent Flaw Puts Linux & Windows devices at risk of hacking
Continue reading New BitTorrent Flaw Puts Linux & Windows devices at risk of hacking

Friction Differential Drive is a Laser-Cut Triumph

Here on Hackaday, too often do we turn our heads and gaze at the novelty of 3D printing functional devices. It’s easy to forget that other techniques for assembling functional prototypes exist. Here, [Reuben] nails the aspect of functional prototyping with the laser cutter with a real-world application: a roll-pitch friction differential drive built from just off-the shelf and laser-cut parts!

The centerpiece is held together with friction, where both the order of assembly and the slight wedged edge made from the laser cutter kerf keeps the components from falling apart. Pulleys transfer motion from the would-be motor mounts, where …read more

Continue reading Friction Differential Drive is a Laser-Cut Triumph

Pulleys within Pulleys form a Unique Transmission for Robots

After a couple of millennia of fiddling with gears, you’d think there wouldn’t be much new ground to explore in the field of power transmission. And then you see something like an infinitely variable transmission built from nested pulleys, and you realize there’s always room for improvement.

The electric motors generally used in robotics can be extremely efficient, often topping 90% efficiency at high speed and low torque. Slap on a traditional fixed-ratio gearbox, or change the input speed, and efficiency is lost. An infinitely variable transmission, like [Alexander Kernbaum]’s cleverly named Inception Drive, allows the motor to stay at …read more

Continue reading Pulleys within Pulleys form a Unique Transmission for Robots

Pulleys within Pulleys form a Unique Transmission for Robots

After a couple of millennia of fiddling with gears, you’d think there wouldn’t be much new ground to explore in the field of power transmission. And then you see something like an infinitely variable transmission built from nested pulleys, and you realize there’s always room for improvement.

The electric motors generally used in robotics can be extremely efficient, often topping 90% efficiency at high speed and low torque. Slap on a traditional fixed-ratio gearbox, or change the input speed, and efficiency is lost. An infinitely variable transmission, like [Alexander Kernbaum]’s cleverly named Inception Drive, allows the motor to stay at …read more

Continue reading Pulleys within Pulleys form a Unique Transmission for Robots