Help Solve The Single-Transistor Latch Mystery

If you’ve spent any time on hackaday.io, you may have noticed that more than a few denizens of the site are fans of “alternative” electronic logic. Aiming to create digital circuits from such things as relays, vacuum tubes, discrete transistors, and occasionally diodes, they come up with designs that use …read more

Continue reading Help Solve The Single-Transistor Latch Mystery

Fun With Negative Resistance: Jellybean Transistors

The concept of negative resistance has always fascinated me. Of course, a true negative resistance is not possible, and what is meant is a negative differential resistance (NDR). But of course knowing the correct term doesn’t do anything to demystify the topic. Negative resistance sounds like an unusual effect, but …read more

Continue reading Fun With Negative Resistance: Jellybean Transistors

Retrotechtacular: How Not to Design With Transistors

Consider the plight of a mid-career or even freshly minted electrical engineer in 1960. He or she was perched precariously between two worlds – the proven, practical, and well-supported world of vacuum tube electronics, and the exciting, new but as yet unproven world of the transistor. The solid-state devices had …read more

Continue reading Retrotechtacular: How Not to Design With Transistors

Bell Labs, Skunk Works, and the Crowd Sourcing of Innovation

I’ve noticed that we hear a lot less from corporate research labs than we used to. They still exist, though. Sure, Bell Labs is owned by Nokia and there is still some hot research at IBM even though they quit publication of the fabled IBM Technical Disclosure Bulletin in 1998. But today innovation is more likely to come from a small company attracting venture capital than from an established company investing in research. Why is that? And should it be that way?

The Way We Were

There was a time when every big company had a significant research and development …read more

Continue reading Bell Labs, Skunk Works, and the Crowd Sourcing of Innovation

Julius Lilienfeld and the First Transistor

Here’s a fun exercise: take a list of the 20th century’s inventions and innovations in electronics, communications, and computing. Make sure you include everything, especially the stuff we take for granted. Now, cross off everything that can’t trace its roots back to the AT&T Corporation’s research arm, the Bell Laboratories. We’d wager heavily that the list would still contain almost everything that built the electronics age: microwave communications, data networks, cellular telephone, solar cells, Unix, and, of course, the transistor.

But is that last one really true? We all know the story of Bardeen, Brattain, and Shockley, the brilliant team …read more

Continue reading Julius Lilienfeld and the First Transistor

New Transistor Uses Metal And Air Instead Of Semiconductors

The more things change, the more things stay the same. Early electronic devices used a spark gap. These have been almost completely replaced with tubes and then semiconductor devices such as transistors. However, transistors will soon reach a theoretical limit on how small they can be which is causing researchers to find the next thing. If the  Royal Melbourne Institute of Technology has its way, we’ll go back to something that has more in common with a spark gap than a conventional transistor. You can find the source paper on the Nano Papers website although the text is behind a …read more

Continue reading New Transistor Uses Metal And Air Instead Of Semiconductors

Sidney Darlington

In a field where components and systems are often known by sterile strings of characters that manufacturers assign or by cutesy names that are clearly products of the marketing department and their focus groups, having your name attached to an innovation is rare. Rarer still is the case where the mere mention of an otherwise obscure inventor’s name brings up a complete schematic in the listener’s mind.

Given how rarely such an honor is bestowed, we’d be forgiven to think that Sidney Darlington’s only contribution to electronics is the paired transistor he invented in the 1950s that bears his name …read more

Continue reading Sidney Darlington

You Can’t Build A Roland TR-808 Because You Don’t Have Faulty Transistors

That headline sounds suspect, but it is the most succinct way to explain why the Roland TR-808 drum machine has a very distinct, and difficult to replicate noise circuit. The drum machine was borne of a hack. As the Secret Life of Synthesizers explains, it was a rejected part picked up and characterized by Roland which delivers this unique auditory thumbprint.

Pictured above is the 2SC828-R, and you can still get this part. But it won’t function the same as the parts found in the original 808. The little dab of paint on the top of the transistor indicates that …read more

Continue reading You Can’t Build A Roland TR-808 Because You Don’t Have Faulty Transistors

You Can’t Build A Roland TR-808 Because You Don’t Have Faulty Transistors

That headline sounds suspect, but it is the most succinct way to explain why the Roland TR-808 drum machine has a very distinct, and difficult to replicate noise circuit. The drum machine was borne of a hack. As the Secret Life of Synthesizers explains, it was a rejected part picked up and characterized by Roland which delivers this unique auditory thumbprint.

Pictured above is the 2SC828-R, and you can still get this part. But it won’t function the same as the parts found in the original 808. The little dab of paint on the top of the transistor indicates that …read more

Continue reading You Can’t Build A Roland TR-808 Because You Don’t Have Faulty Transistors

Transistor Fundamentals Animated

When we were in school, every description of how transistors work was pretty dry and had a lot of math involved. We suppose you might have had a great instructor who was able to explain things more intuitively, but that was luck of the draw and statistically unlikely. These days, there are so many great videos on the Internet that explain things that even if you know the subject matter, it is fun to watch and see some of the great animations. For example [Sabin] has this beautifully animated explanation of how MOSFETs work that you can see below.

It …read more

Continue reading Transistor Fundamentals Animated