Instrument Packed Pedal Keeps Track of Cyclist’s Power

Exactly how much work is required to pedal a bike? There are plenty of ways to measure the power generated by a cyclist, but a lot of them such as heavily instrumented bottom brackets and crank arms, can be far too expensive for casual use. But for $30 in parts you can build this power-measuring bike pedal. and find out just how hard you’re stoking.

Of course it’s not just the parts but knowing what to do with them, and [rabbitcreek] has put a lot of thought and engineering into this power pedal. The main business of measuring the force …read more

Continue reading Instrument Packed Pedal Keeps Track of Cyclist’s Power

Load Cells Tell You to Lay Off the Donuts

Our old algebra teacher used to say, “You have to take what you know and use it to get what you don’t know.” That saying always reminds of us sensors that convert physical quantities into things our microcontrollers can measure. Sometimes the key to a project is knowing what kind of sensor will read the physical properties of the system you are interested in. If that physical property is weight, you can use what is known as a load cell. [DegrawSt] uses four 50 kg load cells to create a bathroom scale using an Arduino.

Load cells typically contain strain …read more

Continue reading Load Cells Tell You to Lay Off the Donuts

Cornell Students Have Your Back

Back problems are some of the most common injuries among office workers and other jobs of a white-collar nature. These are injuries that develop over a long period of time and are often caused by poor posture or bad ergonomics. Some of the electrical engineering students at Cornell recognized this problem and used their senior design project to address this issue. [Rohit Jha], [Amanda Pustis], and [Erissa Irani] designed and built a posture correcting device that alerts the wearer whenever their spine isn’t in the ideal position.

The device fits into a tight-fitting shirt. The sensor itself is a flex …read more

Continue reading Cornell Students Have Your Back

Flexible, Sensitive Sensors from Silly Putty and Graphene

Everyone’s favorite viscoelastic non-Newtonian fluid has a new use, besides bouncing, stretching, and getting caught in your kid’s hair. Yes, it’s Silly Putty, and when mixed with graphene it turns out to make a dandy force sensor.

To be clear, [Jonathan Coleman] and his colleagues at Trinity College in Dublin aren’t buying the familiar plastic eggs from the local toy store for their experiments. They’re making they’re own silicone polymers, but their methods (listed in this paywalled article from the journal Science) are actually easy to replicate. They just mix silicone oil, or polydimethylsiloxane (PDMS), with boric acid, and apply …read more

Continue reading Flexible, Sensitive Sensors from Silly Putty and Graphene

Crossing Wheatstone Bridges

The Wheatstone bridge is a way of measuring resistance with great accuracy and despite having been invented over 150 years ago, it still finds plenty of use today. Even searching for it on Hackaday brings up its use in a number of hacks. It’s a fundamental experimental device, and you should know about it.

How It Works

Here’s an easy way to understand how the Wheatstone bridge works. In the schematic are two voltage dividers (pairs of resistors in series): R1 with R2 and R3 with R4. If you do the math, you’ll notice that the voltages across R1 and …read more

Continue reading Crossing Wheatstone Bridges

Automatic Resistance: Resistors Controlled by the Environment

Resistors are one of the fundamental components used in electronic circuits. They do one thing: resist the flow of electrical current. There is more than one way to skin a cat, and there is more than one way for a resistor to work. In previous articles I talked about fixed value resistors as well as variable resistors.

There is one other major group of variable resistors which I didn’t get into: resistors which change value without human intervention. These change by environmental means: temperature, voltage, light, magnetic fields and physical strain. They’re commonly used for automation and without them our …read more

Continue reading Automatic Resistance: Resistors Controlled by the Environment

Cheap Torque Sensor Goes Back to Basics on Strain Gauges

Sooner or later, we’ve all got to deal with torque measurement. Most of us will never need to go beyond the satisfying click of a micrometer-style torque wrench or the grating buzz of a cordless drill-driver as the clutch releases. But at some point you may actually need to measure torque, in which case this guide to torque sensors might be just the thing.

[Taylor Schweizer]’s four-part series on torque is pretty comprehensive. The link above is to the actual build of his DIY torque transducer, but the preceding three installments are well worth the read too. [Taylor] describes himself …read more

Continue reading Cheap Torque Sensor Goes Back to Basics on Strain Gauges