The Breadboard RF103

When [ik1xpv] sets out to build a software-defined radio (SDR), he doesn’t fool around. His Breadboard RF103 sports USB 3.0, and 16-bit A/D converter that can sample up to 105 Msps, and can receive from 0 to 1800 MHz. Not bad. Thanks to the USB 3.0 port, all the signal processing occurs in the PC without the limitations of feeding data through a common sound port. You can see the device in action in the video below.

The Cypress FX3 USB device is an ARM processor, but it is only streaming data, not processing it. You can find the slightly …read more

Continue reading The Breadboard RF103

Testing the Outernet Dreamcatcher SDR

What do you get when you cross an ARM-based Linux PC and an RTL-SDR? Sounds like the start of a joke, but the answer is Outernet’s Dreamcatcher. It is a single PCB with an RTL-SDR software defined radio, an L-band LNA, and an Allwinner A13 processor with 512MB of RAM and a 1 GHz clock speed. The rtl-sdr site recently posted a good review of the $99 board.

We’ll let you read the review for yourself, but the conclusion was that despite some bugs, the board was no more expensive than pulling the parts together separately. On the other hand, …read more

Continue reading Testing the Outernet Dreamcatcher SDR

CPLD-Based Synchronization of Multiple Software Defined Radios

Forgive the click bait headline, but the latest work from [Marco Bartolucci] and [José A. del Peral-Rosado] is really great. They’re using multiple HackRFs, synchronized together, with hybrid positioning algorithms to derive more precise localization accuracy. (PDF)

Like all SDRs, the HackRF can be used to solve positioning problems using WIFi, Bluetooth, 3G, 4G, and GNSS. Multiple receivers can also be used, but this requires synchronization for time-based or frequency-based ranging. [Bartolucci] and [Peral-Rosado] present a novel solution for synchronizing these HackRFs using a few convenient ports available on the board, a bit of CPLD hacking, and a GNSS receiver …read more

Continue reading CPLD-Based Synchronization of Multiple Software Defined Radios

If The I And Q Of Software Defined Radio Are Your Nemesis, Read On

For those of us whose interests lie in radio, encountering our first software defined radio must have universally seemed like a miracle. Here is a surprisingly simple device, essentially a clever mixer and a set of analogue-to-digital or digital-to-analogue converters, that can import all the complex and tricky-to-set-up parts of a traditional radio to a computer, in which all signal procession can be done using software.

When your curiosity gets the better of you and you start to peer into the workings of a software defined radio though, you encounter something you won’t have seen before in a traditional radio. …read more

Continue reading If The I And Q Of Software Defined Radio Are Your Nemesis, Read On

If The I And Q Of Software Defined Radio Are Your Nemesis, Read On

For those of us whose interests lie in radio, encountering our first software defined radio must have universally seemed like a miracle. Here is a surprisingly simple device, essentially a clever mixer and a set of analogue-to-digital or digital-to-analogue converters, that can import all the complex and tricky-to-set-up parts of a traditional radio to a computer, in which all signal procession can be done using software.

When your curiosity gets the better of you and you start to peer into the workings of a software defined radio though, you encounter something you won’t have seen before in a traditional radio. …read more

Continue reading If The I And Q Of Software Defined Radio Are Your Nemesis, Read On

SDR and Node.js Remote-Controlled Monster Drift

Most old-school remote controlled cars broadcast their controls on 27 MHz. Some software-defined radio (SDR) units will go that low. The rest, as we hardware folks like to say, is a simple matter of coding.

So kudos to [watson] for actually doing the coding. His monster drift project starts with the basics — sine and cosine waves of the right frequency — and combines them in just the right durations to spit out to an SDR, in this case a HackRF. Watch the smile on his face as he hits the enter key and the car pulls off an epic …read more

Continue reading SDR and Node.js Remote-Controlled Monster Drift

Raspberry Pi SDR

[Chris D] noticed that the excellent software defined radio (SDR) software gqrx will run on the Raspberry Pi now. So he married a Raspberry Pi 3, a touchscreen, an RTL-SDR dongle, and an upconverter to make a very nice receiver setup. You can see the receiver in action below.

The video is a little light on build details, but there is a shot of the setup with the pieces labeled, and you should be able to figure it out from there. Of course, gqrx works with lots of different SDR devices so you might have to make adjustments depending on …read more

Continue reading Raspberry Pi SDR

Ice, Ice, Radio Uses FPGA

Building a software defined radio (SDR) involves many trades offs. But one of the most fundamental is should you use an FPGA or a CPU to do the processing. Of course, if you are piping data to a PC, the answer is probably a CPU. But if you are doing the whole system, it is a vexing choice. The FPGA can handle lots of data all at one time but is somewhat more difficult to develop and modify. CPUs using software are flexible–especially for coding user interfaces, networking connections, and the like) but don’t always have enough horsepower to cope …read more

Continue reading Ice, Ice, Radio Uses FPGA

Cache Shortwave Signals for Later with this SDR Spectrum Grabber

Shortwave listening has always been a mainly nocturnal hobby. To get the real DX, one had to wait for favorable ionospheric conditions after sunset and spend hours twisting knobs while straining to pick voices from half a planet away out of the noise. But who has time for that in today’s world? And what of the poor city-dwelling SWL, with antenna limitations and often elevated noise floor in the urban jungle?

[London Shortwave] came up with a solution to both problems – a briefcase SDR capture rig. With a wide-band SDR receiver and an HF up-converter, a Windows tablet, a …read more

Continue reading Cache Shortwave Signals for Later with this SDR Spectrum Grabber

Building A LoRa PHY With SDR

The Internet of Things is terrible when it’s your toaster. The real fun happens when you have hundreds or thousands of sensors sending data back to a base station every day. That requires low power, and that means LPWAN, the Low Power Wide Area Network.

There are a lot of options for LPWAN, but few are a perfect fit. LoRa is one of the rare exceptions, offering years of operation on a single AA cell, and range measured in miles. Layers two and three of LoRa are available as public documentation, but until now layer one has been patented and …read more

Continue reading Building A LoRa PHY With SDR