Flexible PCB Contest Round Up

The 2019 Hackaday Prize, which was announced last week, is very much on everyone’s mind, so much so that we’ve already gotten a great response with a lot of really promising early entries. As much as we love that, the Prize isn’t the only show in town, and we’d be …read more

Continue reading Flexible PCB Contest Round Up

Flex PCBs Make Force-Mapping Pressure Sensor for Amputee

What prosthetic limbs can do these days is nothing short of miraculous, and can change the life of an amputee is so many ways. But no matter what advanced sensors and actuators are added to the prosthetic, it has to interface with the wearer’s body, and that can lead to …read more

Continue reading Flex PCBs Make Force-Mapping Pressure Sensor for Amputee

Make a Non-Contact Voltage Probe

You’ve probably seen probes that detect live wires in, for example, home wiring, without having to actually probe the wire. These are sometimes used to test strings of Christmas lights, too. We’ve even seen the sensors built into a voltmeter. [Crazy Couple] has a few do-it-yourself versions that can do …read more

Continue reading Make a Non-Contact Voltage Probe

Sensor-Laden Pigeons Gather Data For Urban Weather Modeling

When it comes to gathering environmental data in real-world settings, urban environments have to be the most challenging. Every city has nooks and crannies that create their own microenvironments, and placing enough sensors to get a decent picture of what’s going on in all of them is a tough job. …read more

Continue reading Sensor-Laden Pigeons Gather Data For Urban Weather Modeling

Door Springs and Neopixels Demonstrate Quantum Computing Principles

They may be out of style now, and something of a choking hazard for toddlers, but there’s no denying that spring doorstops make a great sound when they’re “plucked” by a foot as you walk by. Sure, maybe not on a 2:00 AM bathroom break when the rest of the …read more

Continue reading Door Springs and Neopixels Demonstrate Quantum Computing Principles

Active Strain Relief for 3D-Printer Filament

Buying 3D-printer filament is little like eating potato chips: you can’t stop at just one. You start with basic black PLA, then you need a particular color for a special project, then you start experimenting with different plastics, and before you know it, you’ve got dozens of reels lined up. Trouble is, unless you move the in-use reel right over the printer, the filament can get a bit unruly as the printer sucks it up. What to do?

How about building an active strain relief system for your filament collection? That what [Daniel Harari] chose to do, and we have …read more

Continue reading Active Strain Relief for 3D-Printer Filament

Predicting Weather with the Internet of Cars

Follow this train of thought: cars have sensors, cars are infrequent use over large areas, cars are the ultimate distributed sensor network for weather conditions.

Many years ago, as I wasted yet another chunk of my life sitting in the linear parking lot that was my morning commute, I mused that there had to be a way to prevent this madness. I thought: What if there was a way for the cars to tell each other where slowdowns are? This was long before smartphones, so it would have to be done the hard way. I imagined that each vehicle could …read more

Continue reading Predicting Weather with the Internet of Cars

Anti-Lock Brakes for Bike Might Make Rides a Little Safer

Crashing one’s bike is a childhood rite of passage, one that can teach valuable lessons in applied physics. Assuming the kid is properly protected and the crash is fairly tame, scrapes and bruises are exchanged for the wisdom to avoid sand and gravel patches, and how to avoid a ballistic dismount by not applying the front brakes harder than or before the rear brakes.

But for many of us, those lessons were learned long ago using a body far more flexible than the version we’re currently in, and the stakes are higher for a bike ride that includes braking mistakes. …read more

Continue reading Anti-Lock Brakes for Bike Might Make Rides a Little Safer

New Part Day : A sensor chip for 3D color X-Ray imaging

We all know CERN as that cool place where physicists play with massive, superconducting rings to smash atoms and subatomic particles to uncover secrets of matter in the Universe. To achieve this aim, they need to do a ton of research in other areas, such as development of special particle detectors.

While such developments are essential to the core research needs of the Centre, they also lead to spinoff applications for the benefit of society at large. One such outcome has been the Medipix Collaborations – a family of read-out chips for particle imaging and detection that can count single …read more

Continue reading New Part Day : A sensor chip for 3D color X-Ray imaging

Three-Conductor Pivot for E-Textiles is Better Than Wires

Pivots for e-textiles can seem like a trivial problem. After all, wires and fabrics bend and flex just fine. However, things that are worn on a body can have trickier needs. Snap connectors are the usual way to get both an electrical connection and a pivot point, but they provide only a single conductor. When [KOBAKANT] had a need for a pivoting connection with three electrical conductors, they came up with a design that did exactly that by using a flexible circuit board integrated to a single button snap.

This interesting design is part of a solution to a specific …read more

Continue reading Three-Conductor Pivot for E-Textiles is Better Than Wires