Panel Beaten Monkey


FYI: A “Panel Beater” = Auto body mechanic in Monkeytown-ese

This Monkey was recently invited to shit himself sit on a SANS DFIR Summit panel discussing Innovation in Mobile Forensics with an All-Star cast of Andrew Hoog, Heather Mahalik, Cindy Murphy and Chris Crowley. While it rated well with the audience, personally (because its all about THIS monkey!) – it seemed that whenever I thought of something relevant, another panel member chirped up with a similar idea and/or the discussion moved on to the next question.
I felt it was kinda difficult to contribute something meaningful yet concise in a 30 second sound bite. Especially for my first open question speaking gig.
Monkey might need to decrease his deferential politeness and/or increase his use of assertive poo flinging in future panel discussions. Alternative suggestions are also welcome in the comments πŸ™‚

Here’s the synopsis of the panel from the DFIR Summit Program …

Puzzle Solving and Science: The Secret Sauce of Innovation in Mobile Forensics
In today’s world, technology (especially mobile device technology) moves at a much faster pace than any of us can keep up with, and available training and research doesn’t always address the problems we encounter. As forensic examiners we face the daily challenges of new apps, new, updated and obscure operating systems, malware, secure apps, pass code and password protected phones, encoding and encryption problems, new artifacts, and broken hardware in order to obtain the evidence we need in a legally defensible and forensically sound manner.  In this session, learn from consistent and experienced innovators in the mobile forensics field the tips, tricks, and mindset that they bring to bear on the toughest problems and how to move beyond cookie cutter forensics towards an approach that allows you to successfully solve and own problems others might consider too hard to even try.

Anyhoo, the initial concept was to have several one word themed slides and discuss how these traits can help with innovation in mobile forensics.
Due to a panel format change, the original slides didn’t get much play time so monkey thought he’d run through them now and present his thoughts with a focus on advice for those newer to mobile forensics. Some of the points made here may have been mentioned during the panel by other speakers but at least here I have time to elaborate and present my point of view. Bonus huh?

Now let’s meet the panel … Can you tell that we went for a superhero introductory theme?

Heather Mahalik!

Cindy Murphy!

Chris Crowley!

Andrew Hoog!

Cheeky4n6monkey!

 And now onto the rest of the slides …

Curiosity

This is what attracts most of us to forensics. How does “Stuff” work and given a set of resultant data, how can we reconstruct what happened?
Documenting your curiosity (via blog post, white paper, journal article) is a great way of both sharing knowledge with the community and demonstrating your ability to research and think independently.
In mobile forensics, curiosity will usually lead to hex diving especially when hunting for new artifacts.
Curiosity naturally leads to “Squirrel chasing” where one interesting artifact can lead you to many others. So you might start out with one focus and end up discovering a bunch of cool artifacts.

Creativity

Our ability to create solutions depends on our paint set. The wider array of skills you have as a mobile forensic examiner, the more creative you can be – especially as mobile devices are a combination of both hardware and software.
For inspiration, background knowledge and anticipating future trends, read research papers, blogs, books, patents, mobile device service manuals/schematics and industry standards (eg eMMC JEDEC standard). Knowing the background details today will help you analyze tomorrow’s device.
Start with a popular make/model and learn how a device works. Go to ifixit.com and the FCC website for pictures of device breakdowns. Read up on how eMMC Flash memory devices work. You don’t have to be able to MacGyver a mobile device on a desert island but familiarize yourself with the fundamental concepts (eg eMMC memory has a NAND Controller acting as the interface to the actual NAND memory).
Look at how an SQLite database is structured. Most apps rely on these types of databases to store their data. The official website is a great place to start.
Develop/practise skills in soldering, chipoff, network forensics, malware reverse engineering, scripting for artifacts.
Know how to find/make/use automated tools. Tools can be used as intended/documented (eg NetworkMiner to read .pcaps) or in more novel ways (eg use an Android emulator to create app artifacts and save on rooting test devices/acquisition time).

Scientific Method

As mobile devices change (use of devices, underlying hardware, encryption, new apps/OS artifacts) we need to be able to record our observations in a structured, repeatable way and be able to communicate our findings to others.
The best way is to create your own data on a test device using a documented set of known actions. As Adam Savage from Mythbusters says: “Remember, kids, the only difference between screwing around and science is writing it down“.
Also, as Mari Degrazia (and Meoware Kitty) showed us at the DFIR Summit, you should also “Trust But Verify” your tools.

Perseverance

Don’t let failure discourage you if/when it comes.
You may need to use a different technique or change your assumptions. Or wait for new developments by someone else and revisit.
There may be more than one solution. Evaluate which is better or worse. The faster method is not always the most comprehensive.
You are not alone. Chances are someone else in the community may have the keys to your problem. Ask around Twitter, forensic forums and your professional network.

Teamwork/Collaboration

No one monkey knows ALL THE THINGS.
I find it helpful to email a trusted group of mobile forensic gurus and describe what I am seeing. Even if they are not able to help directly, it forces me to structure my thinking and help me question my approach.
Having a trusted group you can bounce ideas/findings off helps both yourself and potentially everyone in the group who may not have the time to otherwise investigate. The increased pool of experience and potential access to more varied test data are added bonuses as well. There is also an inherent double checking of your analysis.
Communicate your ideas often. Even if you start feeling like a spam monkey, realize that people can come up with amazing ideas/suggestions when prompted with the right stimulus.
Share your innovation with the community – they may be able to help you improve it and/or adapt it for another purpose that you never would have thought of.

Choose your team wisely though. There are some “One way transaction” types who you can help and then never hear from again. Be aware that it is a small community and word does get around about potential time wasters/bullshitters. 
Alternatively, you might be contacted by some rude farker after some free advice/labour – eg “You seem like you know what you are doing. Here’s my problem …”
Realize that being polite/considerate goes a long way to building the required level of trust. Recognize that you are probably asking someone to give up their free time for your cause.
Give team mates a default “opt out” of receiving your spam. For example, “If you wish to keep receiving these types of emails, please let me know. Otherwise, Thankyou for your time.” and if you don’t hear back, stop sending shit. Most people in forensics will be keen to discover new artifacts/research but be sure to try to organize your thoughts before hitting send.

Manage people’s expectations. If you don’t know or are not sure – it is better to under promise and over deliver later. Don’t feel bad about saying “I don’t know” or “I’m currently working on other things and don’t have the time right now”.

Luck

I believe that you can make your own “Luck” through being prepared when the opportunity presents itself.
For example, I had difficulties landing a forensics job after finishing my graduate studies in Forensic Computing. The market here in Monkeytown was relatively small compared to the US.
Through personal research projects that I blogged about and multiple US internships, I was able to land a rare and Monkeytown based forensic research dream job for which I am still counting my blessings. Having a documented prior body of work helped make the recruitment process so much easier (it also helped that there were technical people in charge of the recruiting).
Pure forensic research jobs seem to be rare in this industry – most positions seems to require a significant element of case work/billable hours. So I really appreciate the ability to pick an area or device and “research the shit out out of it”.

On the other hand, occasionally in a case, you can have some plain old good fortune such as when Cindy Murphy and I were looking at a Windows Phone 8 device and we found an SMS stating “Da Code is …” (which ended up being the PIN code for the phone).

Questions?

I just included this slide because I think it was one of my better ‘toons in the slide deck πŸ™‚

Final Thoughts

Physical fitness and rest are also important factors in staying creative. In the past, I’ve had some difficulties sleeping which obviously had an adverse affect on my work. A light regimen of regular exercise (15 minutes x 3 times per week) on the stationary bike has worked wonders on my tiredness levels and aerobic fitness. The paunch still remains a work in progress however πŸ˜‰
For those interested, check out Dr Michael Mosely and Peta Bee’s excellent research book on High Intensity Training (HIT) called FastExercise. It shows how you don’t have to spend a huge amount of time at the gym to start seeing some immediate health benefits.

So long as you remain committed to learning, the innovation will come. Don’t sweat about the non creative periods.

Learning to script is a good way of forcing you to understand how data is stored at the binary level. Python is a popular choice in forensics for its readability, many existing code libraries and large user base.

A library of “most likely to be encountered” test devices can help you to create before/after reference data sets to validate your research. These may be sourced privately from online (eg eBay) or from previous cases.

When public speaking, I have to learn to project my voice more. Elgin from the SANS AV crew kindly took the time after the panel to advise me to speak more from the diaphragm in the future. Concrete feedback like this is the best way to improve my speaking ability. Having said that, maybe monkey also needs to dose up on the caffeine before the next panel so he can react quicker/with more urgency. I’m guessing experience is the best teacher though.

The 2016 SANS DFIR Summit Presentation Slides are now available from here. Get them while they’re hot!

Special Thanks to Jennifer Santiago (Director of Content Development & SANS Summit Speaker Wrangler) for her patience in dealing with this first time speaker/panellist.
Special Thanks also to my fellow panellists Andrew, Chris, Cindy and Heather for welcoming this monkey as a peer rather than a curiosity.

Not to get all heavy and philosophical on you but I found this quote that pretty much sums up my thoughts on innovation. It is from Nguyen Quyen who apparently was a Vietnamese Anti-French Colonist from the early part of the 20th Century. Ain’t Google great?

“Successful innovation is not a single breakthrough. It is not a sprint. It is not an event for the solo runner. Successful innovation is a team sport, it’s a relay race.”

Good luck quoting that on a panel and not sounding like a complete wanker though πŸ˜‰

If anyone has some suggestions for how I can improve my panel talking skills or would like to share some tips on innovation in mobile forensics, please leave a comment. Thanks!

Continue reading Panel Beaten Monkey

Panel Beaten Monkey


FYI: A “Panel Beater” = Auto body mechanic in Monkeytown-ese

This Monkey was recently invited to shit himself sit on a SANS DFIR Summit panel discussing Innovation in Mobile Forensics with an All-Star cast of Andrew Hoog, Heather Mahalik, Cindy Murphy and Chris Crowley. While it rated well with the audience, personally (because its all about THIS monkey!) – it seemed that whenever I thought of something relevant, another panel member chirped up with a similar idea and/or the discussion moved on to the next question.
I felt it was kinda difficult to contribute something meaningful yet concise in a 30 second sound bite. Especially for my first open question speaking gig.
Monkey might need to decrease his deferential politeness and/or increase his use of assertive poo flinging in future panel discussions. Alternative suggestions are also welcome in the comments πŸ™‚

Here’s the synopsis of the panel from the DFIR Summit Program …

Puzzle Solving and Science: The Secret Sauce of Innovation in Mobile Forensics
In today’s world, technology (especially mobile device technology) moves at a much faster pace than any of us can keep up with, and available training and research doesn’t always address the problems we encounter. As forensic examiners we face the daily challenges of new apps, new, updated and obscure operating systems, malware, secure apps, pass code and password protected phones, encoding and encryption problems, new artifacts, and broken hardware in order to obtain the evidence we need in a legally defensible and forensically sound manner.  In this session, learn from consistent and experienced innovators in the mobile forensics field the tips, tricks, and mindset that they bring to bear on the toughest problems and how to move beyond cookie cutter forensics towards an approach that allows you to successfully solve and own problems others might consider too hard to even try.

Anyhoo, the initial concept was to have several one word themed slides and discuss how these traits can help with innovation in mobile forensics.
Due to a panel format change, the original slides didn’t get much play time so monkey thought he’d run through them now and present his thoughts with a focus on advice for those newer to mobile forensics. Some of the points made here may have been mentioned during the panel by other speakers but at least here I have time to elaborate and present my point of view. Bonus huh?

Now let’s meet the panel … Can you tell that we went for a superhero introductory theme?

Heather Mahalik!

Cindy Murphy!

Chris Crowley!

Andrew Hoog!

Cheeky4n6monkey!

 And now onto the rest of the slides …

Curiosity

This is what attracts most of us to forensics. How does “Stuff” work and given a set of resultant data, how can we reconstruct what happened?
Documenting your curiosity (via blog post, white paper, journal article) is a great way of both sharing knowledge with the community and demonstrating your ability to research and think independently.
In mobile forensics, curiosity will usually lead to hex diving especially when hunting for new artifacts.
Curiosity naturally leads to “Squirrel chasing” where one interesting artifact can lead you to many others. So you might start out with one focus and end up discovering a bunch of cool artifacts.

Creativity

Our ability to create solutions depends on our paint set. The wider array of skills you have as a mobile forensic examiner, the more creative you can be – especially as mobile devices are a combination of both hardware and software.
For inspiration, background knowledge and anticipating future trends, read research papers, blogs, books, patents, mobile device service manuals/schematics and industry standards (eg eMMC JEDEC standard). Knowing the background details today will help you analyze tomorrow’s device.
Start with a popular make/model and learn how a device works. Go to ifixit.com and the FCC website for pictures of device breakdowns. Read up on how eMMC Flash memory devices work. You don’t have to be able to MacGyver a mobile device on a desert island but familiarize yourself with the fundamental concepts (eg eMMC memory has a NAND Controller acting as the interface to the actual NAND memory).
Look at how an SQLite database is structured. Most apps rely on these types of databases to store their data. The official website is a great place to start.
Develop/practise skills in soldering, chipoff, network forensics, malware reverse engineering, scripting for artifacts.
Know how to find/make/use automated tools. Tools can be used as intended/documented (eg NetworkMiner to read .pcaps) or in more novel ways (eg use an Android emulator to create app artifacts and save on rooting test devices/acquisition time).

Scientific Method

As mobile devices change (use of devices, underlying hardware, encryption, new apps/OS artifacts) we need to be able to record our observations in a structured, repeatable way and be able to communicate our findings to others.
The best way is to create your own data on a test device using a documented set of known actions. As Adam Savage from Mythbusters says: “Remember, kids, the only difference between screwing around and science is writing it down“.
Also, as Mari Degrazia (and Meoware Kitty) showed us at the DFIR Summit, you should also “Trust But Verify” your tools.

Perseverance

Don’t let failure discourage you if/when it comes.
You may need to use a different technique or change your assumptions. Or wait for new developments by someone else and revisit.
There may be more than one solution. Evaluate which is better or worse. The faster method is not always the most comprehensive.
You are not alone. Chances are someone else in the community may have the keys to your problem. Ask around Twitter, forensic forums and your professional network.

Teamwork/Collaboration

No one monkey knows ALL THE THINGS.
I find it helpful to email a trusted group of mobile forensic gurus and describe what I am seeing. Even if they are not able to help directly, it forces me to structure my thinking and help me question my approach.
Having a trusted group you can bounce ideas/findings off helps both yourself and potentially everyone in the group who may not have the time to otherwise investigate. The increased pool of experience and potential access to more varied test data are added bonuses as well. There is also an inherent double checking of your analysis.
Communicate your ideas often. Even if you start feeling like a spam monkey, realize that people can come up with amazing ideas/suggestions when prompted with the right stimulus.
Share your innovation with the community – they may be able to help you improve it and/or adapt it for another purpose that you never would have thought of.

Choose your team wisely though. There are some “One way transaction” types who you can help and then never hear from again. Be aware that it is a small community and word does get around about potential time wasters/bullshitters. 
Alternatively, you might be contacted by some rude farker after some free advice/labour – eg “You seem like you know what you are doing. Here’s my problem …”
Realize that being polite/considerate goes a long way to building the required level of trust. Recognize that you are probably asking someone to give up their free time for your cause.
Give team mates a default “opt out” of receiving your spam. For example, “If you wish to keep receiving these types of emails, please let me know. Otherwise, Thankyou for your time.” and if you don’t hear back, stop sending shit. Most people in forensics will be keen to discover new artifacts/research but be sure to try to organize your thoughts before hitting send.

Manage people’s expectations. If you don’t know or are not sure – it is better to under promise and over deliver later. Don’t feel bad about saying “I don’t know” or “I’m currently working on other things and don’t have the time right now”.

Luck

I believe that you can make your own “Luck” through being prepared when the opportunity presents itself.
For example, I had difficulties landing a forensics job after finishing my graduate studies in Forensic Computing. The market here in Monkeytown was relatively small compared to the US.
Through personal research projects that I blogged about and multiple US internships, I was able to land a rare and Monkeytown based forensic research dream job for which I am still counting my blessings. Having a documented prior body of work helped make the recruitment process so much easier (it also helped that there were technical people in charge of the recruiting).
Pure forensic research jobs seem to be rare in this industry – most positions seems to require a significant element of case work/billable hours. So I really appreciate the ability to pick an area or device and “research the shit out out of it”.

On the other hand, occasionally in a case, you can have some plain old good fortune such as when Cindy Murphy and I were looking at a Windows Phone 8 device and we found an SMS stating “Da Code is …” (which ended up being the PIN code for the phone).

Questions?

I just included this slide because I think it was one of my better ‘toons in the slide deck πŸ™‚

Final Thoughts

Physical fitness and rest are also important factors in staying creative. In the past, I’ve had some difficulties sleeping which obviously had an adverse affect on my work. A light regimen of regular exercise (15 minutes x 3 times per week) on the stationary bike has worked wonders on my tiredness levels and aerobic fitness. The paunch still remains a work in progress however πŸ˜‰
For those interested, check out Dr Michael Mosely and Peta Bee’s excellent research book on High Intensity Training (HIT) called FastExercise. It shows how you don’t have to spend a huge amount of time at the gym to start seeing some immediate health benefits.

So long as you remain committed to learning, the innovation will come. Don’t sweat about the non creative periods.

Learning to script is a good way of forcing you to understand how data is stored at the binary level. Python is a popular choice in forensics for its readability, many existing code libraries and large user base.

A library of “most likely to be encountered” test devices can help you to create before/after reference data sets to validate your research. These may be sourced privately from online (eg eBay) or from previous cases.

When public speaking, I have to learn to project my voice more. Elgin from the SANS AV crew kindly took the time after the panel to advise me to speak more from the diaphragm in the future. Concrete feedback like this is the best way to improve my speaking ability. Having said that, maybe monkey also needs to dose up on the caffeine before the next panel so he can react quicker/with more urgency. I’m guessing experience is the best teacher though.

The 2016 SANS DFIR Summit Presentation Slides are now available from here. Get them while they’re hot!

Special Thanks to Jennifer Santiago (Director of Content Development & SANS Summit Speaker Wrangler) for her patience in dealing with this first time speaker/panellist.
Special Thanks also to my fellow panellists Andrew, Chris, Cindy and Heather for welcoming this monkey as a peer rather than a curiosity.

Not to get all heavy and philosophical on you but I found this quote that pretty much sums up my thoughts on innovation. It is from Nguyen Quyen who apparently was a Vietnamese Anti-French Colonist from the early part of the 20th Century. Ain’t Google great?

“Successful innovation is not a single breakthrough. It is not a sprint. It is not an event for the solo runner. Successful innovation is a team sport, it’s a relay race.”

Good luck quoting that on a panel and not sounding like a complete wanker though πŸ˜‰

If anyone has some suggestions for how I can improve my panel talking skills or would like to share some tips on innovation in mobile forensics, please leave a comment. Thanks!

Continue reading Panel Beaten Monkey

Panel Beaten Monkey


FYI: A “Panel Beater” = Auto body mechanic in Monkeytown-ese

This Monkey was recently invited to shit himself sit on a SANS DFIR Summit panel discussing Innovation in Mobile Forensics with an All-Star cast of Andrew Hoog, Heather Mahalik, Cindy Murphy and Chris Crowley. While it rated well with the audience, personally (because its all about THIS monkey!) – it seemed that whenever I thought of something relevant, another panel member chirped up with a similar idea and/or the discussion moved on to the next question.
I felt it was kinda difficult to contribute something meaningful yet concise in a 30 second sound bite. Especially for my first open question speaking gig.
Monkey might need to decrease his deferential politeness and/or increase his use of assertive poo flinging in future panel discussions. Alternative suggestions are also welcome in the comments πŸ™‚

Here’s the synopsis of the panel from the DFIR Summit Program …

Puzzle Solving and Science: The Secret Sauce of Innovation in Mobile Forensics
In today’s world, technology (especially mobile device technology) moves at a much faster pace than any of us can keep up with, and available training and research doesn’t always address the problems we encounter. As forensic examiners we face the daily challenges of new apps, new, updated and obscure operating systems, malware, secure apps, pass code and password protected phones, encoding and encryption problems, new artifacts, and broken hardware in order to obtain the evidence we need in a legally defensible and forensically sound manner.  In this session, learn from consistent and experienced innovators in the mobile forensics field the tips, tricks, and mindset that they bring to bear on the toughest problems and how to move beyond cookie cutter forensics towards an approach that allows you to successfully solve and own problems others might consider too hard to even try.

Anyhoo, the initial concept was to have several one word themed slides and discuss how these traits can help with innovation in mobile forensics.
Due to a panel format change, the original slides didn’t get much play time so monkey thought he’d run through them now and present his thoughts with a focus on advice for those newer to mobile forensics. Some of the points made here may have been mentioned during the panel by other speakers but at least here I have time to elaborate and present my point of view. Bonus huh?

Now let’s meet the panel … Can you tell that we went for a superhero introductory theme?

Heather Mahalik!

Cindy Murphy!

Chris Crowley!

Andrew Hoog!

Cheeky4n6monkey!

 And now onto the rest of the slides …

Curiosity

This is what attracts most of us to forensics. How does “Stuff” work and given a set of resultant data, how can we reconstruct what happened?
Documenting your curiosity (via blog post, white paper, journal article) is a great way of both sharing knowledge with the community and demonstrating your ability to research and think independently.
In mobile forensics, curiosity will usually lead to hex diving especially when hunting for new artifacts.
Curiosity naturally leads to “Squirrel chasing” where one interesting artifact can lead you to many others. So you might start out with one focus and end up discovering a bunch of cool artifacts.

Creativity

Our ability to create solutions depends on our paint set. The wider array of skills you have as a mobile forensic examiner, the more creative you can be – especially as mobile devices are a combination of both hardware and software.
For inspiration, background knowledge and anticipating future trends, read research papers, blogs, books, patents, mobile device service manuals/schematics and industry standards (eg eMMC JEDEC standard). Knowing the background details today will help you analyze tomorrow’s device.
Start with a popular make/model and learn how a device works. Go to ifixit.com and the FCC website for pictures of device breakdowns. Read up on how eMMC Flash memory devices work. You don’t have to be able to MacGyver a mobile device on a desert island but familiarize yourself with the fundamental concepts (eg eMMC memory has a NAND Controller acting as the interface to the actual NAND memory).
Look at how an SQLite database is structured. Most apps rely on these types of databases to store their data. The official website is a great place to start.
Develop/practise skills in soldering, chipoff, network forensics, malware reverse engineering, scripting for artifacts.
Know how to find/make/use automated tools. Tools can be used as intended/documented (eg NetworkMiner to read .pcaps) or in more novel ways (eg use an Android emulator to create app artifacts and save on rooting test devices/acquisition time).

Scientific Method

As mobile devices change (use of devices, underlying hardware, encryption, new apps/OS artifacts) we need to be able to record our observations in a structured, repeatable way and be able to communicate our findings to others.
The best way is to create your own data on a test device using a documented set of known actions. As Adam Savage from Mythbusters says: “Remember, kids, the only difference between screwing around and science is writing it down“.
Also, as Mari Degrazia (and Meoware Kitty) showed us at the DFIR Summit, you should also “Trust But Verify” your tools.

Perseverance

Don’t let failure discourage you if/when it comes.
You may need to use a different technique or change your assumptions. Or wait for new developments by someone else and revisit.
There may be more than one solution. Evaluate which is better or worse. The faster method is not always the most comprehensive.
You are not alone. Chances are someone else in the community may have the keys to your problem. Ask around Twitter, forensic forums and your professional network.

Teamwork/Collaboration

No one monkey knows ALL THE THINGS.
I find it helpful to email a trusted group of mobile forensic gurus and describe what I am seeing. Even if they are not able to help directly, it forces me to structure my thinking and help me question my approach.
Having a trusted group you can bounce ideas/findings off helps both yourself and potentially everyone in the group who may not have the time to otherwise investigate. The increased pool of experience and potential access to more varied test data are added bonuses as well. There is also an inherent double checking of your analysis.
Communicate your ideas often. Even if you start feeling like a spam monkey, realize that people can come up with amazing ideas/suggestions when prompted with the right stimulus.
Share your innovation with the community – they may be able to help you improve it and/or adapt it for another purpose that you never would have thought of.

Choose your team wisely though. There are some “One way transaction” types who you can help and then never hear from again. Be aware that it is a small community and word does get around about potential time wasters/bullshitters. 
Alternatively, you might be contacted by some rude farker after some free advice/labour – eg “You seem like you know what you are doing. Here’s my problem …”
Realize that being polite/considerate goes a long way to building the required level of trust. Recognize that you are probably asking someone to give up their free time for your cause.
Give team mates a default “opt out” of receiving your spam. For example, “If you wish to keep receiving these types of emails, please let me know. Otherwise, Thankyou for your time.” and if you don’t hear back, stop sending shit. Most people in forensics will be keen to discover new artifacts/research but be sure to try to organize your thoughts before hitting send.

Manage people’s expectations. If you don’t know or are not sure – it is better to under promise and over deliver later. Don’t feel bad about saying “I don’t know” or “I’m currently working on other things and don’t have the time right now”.

Luck

I believe that you can make your own “Luck” through being prepared when the opportunity presents itself.
For example, I had difficulties landing a forensics job after finishing my graduate studies in Forensic Computing. The market here in Monkeytown was relatively small compared to the US.
Through personal research projects that I blogged about and multiple US internships, I was able to land a rare and Monkeytown based forensic research dream job for which I am still counting my blessings. Having a documented prior body of work helped make the recruitment process so much easier (it also helped that there were technical people in charge of the recruiting).
Pure forensic research jobs seem to be rare in this industry – most positions seems to require a significant element of case work/billable hours. So I really appreciate the ability to pick an area or device and “research the shit out out of it”.

On the other hand, occasionally in a case, you can have some plain old good fortune such as when Cindy Murphy and I were looking at a Windows Phone 8 device and we found an SMS stating “Da Code is …” (which ended up being the PIN code for the phone).

Questions?

I just included this slide because I think it was one of my better ‘toons in the slide deck πŸ™‚

Final Thoughts

Physical fitness and rest are also important factors in staying creative. In the past, I’ve had some difficulties sleeping which obviously had an adverse affect on my work. A light regimen of regular exercise (15 minutes x 3 times per week) on the stationary bike has worked wonders on my tiredness levels and aerobic fitness. The paunch still remains a work in progress however πŸ˜‰
For those interested, check out Dr Michael Mosely and Peta Bee’s excellent research book on High Intensity Training (HIT) called FastExercise. It shows how you don’t have to spend a huge amount of time at the gym to start seeing some immediate health benefits.

So long as you remain committed to learning, the innovation will come. Don’t sweat about the non creative periods.

Learning to script is a good way of forcing you to understand how data is stored at the binary level. Python is a popular choice in forensics for its readability, many existing code libraries and large user base.

A library of “most likely to be encountered” test devices can help you to create before/after reference data sets to validate your research. These may be sourced privately from online (eg eBay) or from previous cases.

When public speaking, I have to learn to project my voice more. Elgin from the SANS AV crew kindly took the time after the panel to advise me to speak more from the diaphragm in the future. Concrete feedback like this is the best way to improve my speaking ability. Having said that, maybe monkey also needs to dose up on the caffeine before the next panel so he can react quicker/with more urgency. I’m guessing experience is the best teacher though.

The 2016 SANS DFIR Summit Presentation Slides are now available from here. Get them while they’re hot!

Special Thanks to Jennifer Santiago (Director of Content Development & SANS Summit Speaker Wrangler) for her patience in dealing with this first time speaker/panellist.
Special Thanks also to my fellow panellists Andrew, Chris, Cindy and Heather for welcoming this monkey as a peer rather than a curiosity.

Not to get all heavy and philosophical on you but I found this quote that pretty much sums up my thoughts on innovation. It is from Nguyen Quyen who apparently was a Vietnamese Anti-French Colonist from the early part of the 20th Century. Ain’t Google great?

“Successful innovation is not a single breakthrough. It is not a sprint. It is not an event for the solo runner. Successful innovation is a team sport, it’s a relay race.”

Good luck quoting that on a panel and not sounding like a complete wanker though πŸ˜‰

If anyone has some suggestions for how I can improve my panel talking skills or would like to share some tips on innovation in mobile forensics, please leave a comment. Thanks!

Continue reading Panel Beaten Monkey

The Chimp That Pimps And An Introduction to e.MMC Flash Memory Forensics

Pimpin Ain’t Easy?

SANS is offering the top 3 referrers to its DFIR Summit 2016 website, an Amazon Echo smart speaker.
As of 11 May 2016, this Chimpy McPimpy was number 5 on the list.
Chimpy would very much like to win an Echo (echo, echo) so he can take it apart and share what forensic artifacts are left on the device.

The Echo is a smart speaker that can listen out for voice commands, play music, search the Internet and control Internet Of Shitty Things. Apparently, more than 3 million have been sold in the US since 2014.

Here’s a (pretty meh) Superbowl commercial demonstrating some of the Echo’s capabilities:


And here’s the Wikipedia entry for the Amazon Echo just so monkey doesn’t have to regurgitate any further (I already have enough body image issues).

The folks at Champlain College have also recently blogged about their Amazon Echo forensic research (here, here and here).
They have a report due out this month (May 2016).
From what this monkey can ascertain, their research focuses on network captures and the Amazon Echo Android App side of things. They also mentioned looking into “chipping off” the device but I’m not sure if this was a core part of their research as it wasn’t mentioned in later posts.

So Monkey is proposing this – (if you haven’t already) please follow this link to the SANS DFIR Summit website and if monkey manages to win an Amazon Echo, he will blog about getting to that sweet, sweet, echoey data from the internal Flash memory. See here  and here  for some background on Flash memory.

How do we know it uses Flash memory?
The awesome folks at ifixit.com have already performed a teardown which you can see here.

From ifixit.com’s picture of the logic board (below), we notice the Flash memory component bearing the text SanDisk SDIN7DP2-4G (highlighted in yellow).

Amazon Echo’s Logic board

Searching for the Flash storage component(s) on most devices (eg phones, tablets, GPS, answering machines, voice recorders) starts with Googling the various integrated circuit (IC) chip identifiers. The Flash memory component is normally located adjacent to the CPU (minimizes interference/timing issues).
In this case, the ifixit.com peeps have helpfully identified/provided a link to the 4 GB SanDisk Flash memory chip.
But if we didn’t have that link, we would try Googling for “SanDisk SDIN7DP2-4G” and/or “SanDisk SDIN7DP2-4G +datasheet” to find out what type of IC it was.
According to this link – for the 4th quarter of 2015, Samsung’s NAND revenue (33.8%) led Toshiba (18.6%), SanDisk (15.8%), Micron (13.9%), SK Hynix (10.1%) and Intel (8%). Other (smaller) manufacturers such as Phison, Sony, Spansion were not mentioned. Not sure how accurate these figures are but if you see one of these manufacturers logos/name on a chip, you have probably found a NAND memory chip of some kind (eg Flash, RAM).

Anyhoo, from the link that ifixit.com provided we can see the following text:

SDIN7DP2-4G,153FBGA 11.5X13 e.MMC 4.51

Here’s what it all means:
153 FBGA (Fine pitched, Ball Grid Array) means there are 153 pin pads arranged in a standard way.
The 11.5X13 refers to the chips dimensions in millimetres.
The e.MMC 4.51 tells us the chip adheres to the Embedded Multi-Media Card (e.MMC) standard (version 4.51) for NAND Flash chip interfacing. We will discuss the e.MMC standard a little further on.

To double check ifixit.com’s data link, we did some Googling and found this link which seems to confirm from multiple sites that the SanDisk Flash chip is 153 FBGA and 11.5 x 13.
Ideally, we would have found the actual datasheet from SanDisk but sometimes you just gotta make do …

It is also worth noting that not all Flash memory chips are e.MMC compatible. Some devices may use their own proprietary NAND interface. Some chips might be NOR Flash (eg Boot ROM) and thus not really relevant to our quest for user data.
Additionally, the latest Flash memory chips may follow a newer (faster, duplex) standard called Universal Flash Storage (UFS). See here for more details on UFS.
So while it appears the days of e.MMC chips are numbered, there’s still a LOT of e.MMC storage devices out there that can be potentially read.

When reading Flash storage for forensics, some key considerations are:
– Does it follow the e.MMC standard?
– Chip pin arrangement (number of pins and spacing)
– Chip dimensions (typically in mm)

The e.MMC standard is used by Flash memory chip manufacturers to provide a common infrastructure / command set for communicating. This way a board manufacturer can (hopefully) substitute one brand of eMMC chip with another brand (probably cheaper) of the same capacity. The standard focuses on the external eMMC chip interfacing and not the internal NAND implementation (which would be manufacturer specific). Having a e.MMC Flash chip makes reading a whole lot easier.

But don’t just listen to me, JEDEC – the folks responsible for the eMMC standard (and UFS), state :

“Designed for a wide range of applications in consumer electronics, mobile phones, handheld computers, navigational systems and other industrial uses, e.MMC is an embedded non-volatile memory system, comprised of both flash memory and a flash memory controller, which simplifies the application interface design and frees the host processor from low-level flash memory management. This benefits product developers by simplifying the non-volatile memory interface design and qualification process – resulting in a reduction in time-to-market as well as facilitating support for future flash device offerings. Small BGA package sizes and low power consumption make e.MMC a viable, low-cost memory solution for mobile and other space-constrained products.”

To get a copy of the e.MMC standard (free registration required), check out this link.

The e.MMC standard document provides this helpful diagram:

JEDEC e.MMC Electrical Standard v5.1

From this we can see that a “Device controller” handles any interfacing with the actual NAND storage (“Memory Array”). This includes things like reading/writing to NAND, paging, TRIM, error correction, password protection.

There are 4 signals/pins required when reading an e.MMC memory:
CLK = Synchronizes the signals between the e.MMC chip and the “Host Controller” (ie CPU of device)
CMD = For issuing commands/receiving command replies from/to the “Host Controller”
DATA0 = For receiving the data at the “Host Controller”
VCC / VCCQ = Power for the NAND memory / Power to the Device Controller. In some cases, this can be the same voltage (1.8 V)
GND / VSS = Ground

It is not a co-incidence that these connections are also required for In-System Programming (ISP) Forensics. But that is probably a topic more suitable for a Part 2 (hint, hint).

We can see these pins labelled in this ForensicsWiki diagram of a BGA 153 e.MMC chip
 

BGA-153 Layout

Note: ForensicsWiki have labelled it as BGA169 but it does not show the extra 16 (typically unused) pins. Count the number of pins (I dare you!) – there’s only 153. At any rate, our target SanDisk chip should look like the BGA153 diagram above. Most of the pins are unused / irrelevant for our reading purposes.
The ever helpful GSMhosting site shows us what a full BGA 169 looks like:

BGA-169 Layout – the extra 16 pins comprise the 2 arcs above/below the concentric squares

Other pin arrangements we’ve seen include BGA162/186 and BGA/eMCP221. Some Flash chips are combined in the same package as the RAM. These are called eMCP (Multi-Chip Package).
Control-F Digital Forensics have blogged an example list which matches some common devices with their e.MMC pin arrangement/size. They also note that the pitch (spacing between pins) for the previously mentioned layouts is 0.5 mm.

So here’s what BGA-162 looks like:

BGA-162 Layout (Source: http://forum.gsmhosting.com/vbb/11016505-post9.html)

And a BGA/eMCP221 looks like:

BGA/e.MCP221 Layout (Source: http://forum.gsmhosting.com/vbb/11260019-post6.html)

Final Thoughts

Due to e.MMC standardisation, reading the data off an e.MMC Flash chip should be straight forward and repeatable – which is great for forensics. Interpreting the subsequent data dump artifacts is usually a more challenging task.
The e.MMC Flash memory content discussed in this post applies equally to Smartphones, Tablets etc.

UPDATE: For even more details on Flash Memory Forensics, check out the following papers:
Forensic Data Recovery from Flash Memory

By Marcel Breeuwsma, Martien de Jongh, Coert Klaver, Ronald van der Knijff and Mark Roeloffs
SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007

and

Theory and practice of flash memory mobile forensics (2009)
By Salvatore Fiorillo
Edith Cowan University, Western Australia

The paper by Breeuwsma et al. is probably THE paper on Flash memory Forensics.

Please don’t forget to click on this link so Monkey can get his Precious Amazon Echo. You might like to do it from a VM if you’re worried about security.
If, for whatever reason, monkey doesn’t get an Echo – it’s no big deal. Just thought it would make for an interesting exercise as we head towards the Internet of Lazy Fatties … At the very least, we have learnt more about performing e.MMC Flash memory forensics.

In other news, in June 2016, this monkey will be:
– Attending his first SANS DFIR Summit
– Speaking on a “Innovation in Mobile Forensics” panel with Cindy Murphy, Heather Mahalik , Andrew Hoog and Chris Crowley. Monkey is still pinching himself about joining the collective brain power of that panel *GULP*
– Facilitating/Rockin’ the Red Apron for SANS FOR585 Advanced Smartphone Forensics with Cindy Murphy (just after the DFIR Summit)

So if you see me around (probably hiding behind/near Cindy or Mari DeGrazia), feel free to say hello and let us know if this blog site has helped you … I promise I’ll try not to fling too much shit (while you’re facing me anyway. Hint: Keep eye contact at all times!).

As always, please feel free to leave feedback regarding this post in the comments section below.

Continue reading The Chimp That Pimps And An Introduction to e.MMC Flash Memory Forensics

The Chimp That Pimps And An Introduction to e.MMC Flash Memory Forensics

Pimpin Ain’t Easy?

SANS is offering the top 3 referrers to its DFIR Summit 2016 website, an Amazon Echo smart speaker.
As of 11 May 2016, this Chimpy McPimpy was number 5 on the list.
Chimpy would very much like to win an Echo (echo, echo) so he can take it apart and share what forensic artifacts are left on the device.

The Echo is a smart speaker that can listen out for voice commands, play music, search the Internet and control Internet Of Shitty Things. Apparently, more than 3 million have been sold in the US since 2014.

Here’s a (pretty meh) Superbowl commercial demonstrating some of the Echo’s capabilities:


And here’s the Wikipedia entry for the Amazon Echo just so monkey doesn’t have to regurgitate any further (I already have enough body image issues).

The folks at Champlain College have also recently blogged about their Amazon Echo forensic research (here, here and here).
They have a report due out this month (May 2016).
From what this monkey can ascertain, their research focuses on network captures and the Amazon Echo Android App side of things. They also mentioned looking into “chipping off” the device but I’m not sure if this was a core part of their research as it wasn’t mentioned in later posts.

So Monkey is proposing this – (if you haven’t already) please follow this link to the SANS DFIR Summit website and if monkey manages to win an Amazon Echo, he will blog about getting to that sweet, sweet, echoey data from the internal Flash memory. See here  and here  for some background on Flash memory.

How do we know it uses Flash memory?
The awesome folks at ifixit.com have already performed a teardown which you can see here.

From ifixit.com’s picture of the logic board (below), we notice the Flash memory component bearing the text SanDisk SDIN7DP2-4G (highlighted in yellow).

Amazon Echo’s Logic board

Searching for the Flash storage component(s) on most devices (eg phones, tablets, GPS, answering machines, voice recorders) starts with Googling the various integrated circuit (IC) chip identifiers. The Flash memory component is normally located adjacent to the CPU (minimizes interference/timing issues).
In this case, the ifixit.com peeps have helpfully identified/provided a link to the 4 GB SanDisk Flash memory chip.
But if we didn’t have that link, we would try Googling for “SanDisk SDIN7DP2-4G” and/or “SanDisk SDIN7DP2-4G +datasheet” to find out what type of IC it was.
According to this link – for the 4th quarter of 2015, Samsung’s NAND revenue (33.8%) led Toshiba (18.6%), SanDisk (15.8%), Micron (13.9%), SK Hynix (10.1%) and Intel (8%). Other (smaller) manufacturers such as Phison, Sony, Spansion were not mentioned. Not sure how accurate these figures are but if you see one of these manufacturers logos/name on a chip, you have probably found a NAND memory chip of some kind (eg Flash, RAM).

Anyhoo, from the link that ifixit.com provided we can see the following text:

SDIN7DP2-4G,153FBGA 11.5X13 e.MMC 4.51

Here’s what it all means:
153 FBGA (Fine pitched, Ball Grid Array) means there are 153 pin pads arranged in a standard way.
The 11.5X13 refers to the chips dimensions in millimetres.
The e.MMC 4.51 tells us the chip adheres to the Embedded Multi-Media Card (e.MMC) standard (version 4.51) for NAND Flash chip interfacing. We will discuss the e.MMC standard a little further on.

To double check ifixit.com’s data link, we did some Googling and found this link which seems to confirm from multiple sites that the SanDisk Flash chip is 153 FBGA and 11.5 x 13.
Ideally, we would have found the actual datasheet from SanDisk but sometimes you just gotta make do …

It is also worth noting that not all Flash memory chips are e.MMC compatible. Some devices may use their own proprietary NAND interface. Some chips might be NOR Flash (eg Boot ROM) and thus not really relevant to our quest for user data.
Additionally, the latest Flash memory chips may follow a newer (faster, duplex) standard called Universal Flash Storage (UFS). See here for more details on UFS.
So while it appears the days of e.MMC chips are numbered, there’s still a LOT of e.MMC storage devices out there that can be potentially read.

When reading Flash storage for forensics, some key considerations are:
– Does it follow the e.MMC standard?
– Chip pin arrangement (number of pins and spacing)
– Chip dimensions (typically in mm)

The e.MMC standard is used by Flash memory chip manufacturers to provide a common infrastructure / command set for communicating. This way a board manufacturer can (hopefully) substitute one brand of eMMC chip with another brand (probably cheaper) of the same capacity. The standard focuses on the external eMMC chip interfacing and not the internal NAND implementation (which would be manufacturer specific). Having a e.MMC Flash chip makes reading a whole lot easier.

But don’t just listen to me, JEDEC – the folks responsible for the eMMC standard (and UFS), state :

“Designed for a wide range of applications in consumer electronics, mobile phones, handheld computers, navigational systems and other industrial uses, e.MMC is an embedded non-volatile memory system, comprised of both flash memory and a flash memory controller, which simplifies the application interface design and frees the host processor from low-level flash memory management. This benefits product developers by simplifying the non-volatile memory interface design and qualification process – resulting in a reduction in time-to-market as well as facilitating support for future flash device offerings. Small BGA package sizes and low power consumption make e.MMC a viable, low-cost memory solution for mobile and other space-constrained products.”

To get a copy of the e.MMC standard (free registration required), check out this link.

The e.MMC standard document provides this helpful diagram:

JEDEC e.MMC Electrical Standard v5.1

From this we can see that a “Device controller” handles any interfacing with the actual NAND storage (“Memory Array”). This includes things like reading/writing to NAND, paging, TRIM, error correction, password protection.

There are 4 signals/pins required when reading an e.MMC memory:
CLK = Synchronizes the signals between the e.MMC chip and the “Host Controller” (ie CPU of device)
CMD = For issuing commands/receiving command replies from/to the “Host Controller”
DATA0 = For receiving the data at the “Host Controller”
VCC / VCCQ = Power for the NAND memory / Power to the Device Controller. In some cases, this can be the same voltage (1.8 V)
GND / VSS = Ground

It is not a co-incidence that these connections are also required for In-System Programming (ISP) Forensics. But that is probably a topic more suitable for a Part 2 (hint, hint).

We can see these pins labelled in this ForensicsWiki diagram of a BGA 153 e.MMC chip
 

BGA-153 Layout

Note: ForensicsWiki have labelled it as BGA169 but it does not show the extra 16 (typically unused) pins. Count the number of pins (I dare you!) – there’s only 153. At any rate, our target SanDisk chip should look like the BGA153 diagram above. Most of the pins are unused / irrelevant for our reading purposes.
The ever helpful GSMhosting site shows us what a full BGA 169 looks like:

BGA-169 Layout – the extra 16 pins comprise the 2 arcs above/below the concentric squares

Other pin arrangements we’ve seen include BGA162/186 and BGA/eMCP221. Some Flash chips are combined in the same package as the RAM. These are called eMCP (Multi-Chip Package).
Control-F Digital Forensics have blogged an example list which matches some common devices with their e.MMC pin arrangement/size. They also note that the pitch (spacing between pins) for the previously mentioned layouts is 0.5 mm.

So here’s what BGA-162 looks like:

BGA-162 Layout (Source: http://forum.gsmhosting.com/vbb/11016505-post9.html)

And a BGA/eMCP221 looks like:

BGA/e.MCP221 Layout (Source: http://forum.gsmhosting.com/vbb/11260019-post6.html)

Final Thoughts

Due to e.MMC standardisation, reading the data off an e.MMC Flash chip should be straight forward and repeatable – which is great for forensics. Interpreting the subsequent data dump artifacts is usually a more challenging task.
The e.MMC Flash memory content discussed in this post applies equally to Smartphones, Tablets etc.

UPDATE: For even more details on Flash Memory Forensics, check out the following papers:
Forensic Data Recovery from Flash Memory

By Marcel Breeuwsma, Martien de Jongh, Coert Klaver, Ronald van der Knijff and Mark Roeloffs
SMALL SCALE DIGITAL DEVICE FORENSICS JOURNAL, VOL. 1, NO. 1, JUNE 2007

and

Theory and practice of flash memory mobile forensics (2009)
By Salvatore Fiorillo
Edith Cowan University, Western Australia

The paper by Breeuwsma et al. is probably THE paper on Flash memory Forensics.

Please don’t forget to click on this link so Monkey can get his Precious Amazon Echo. You might like to do it from a VM if you’re worried about security.
If, for whatever reason, monkey doesn’t get an Echo – it’s no big deal. Just thought it would make for an interesting exercise as we head towards the Internet of Lazy Fatties … At the very least, we have learnt more about performing e.MMC Flash memory forensics.

In other news, in June 2016, this monkey will be:
– Attending his first SANS DFIR Summit
– Speaking on a “Innovation in Mobile Forensics” panel with Cindy Murphy, Heather Mahalik , Andrew Hoog and Chris Crowley. Monkey is still pinching himself about joining the collective brain power of that panel *GULP*
– Facilitating/Rockin’ the Red Apron for SANS FOR585 Advanced Smartphone Forensics with Cindy Murphy (just after the DFIR Summit)

So if you see me around (probably hiding behind/near Cindy or Mari DeGrazia), feel free to say hello and let us know if this blog site has helped you … I promise I’ll try not to fling too much shit (while you’re facing me anyway. Hint: Keep eye contact at all times!).

As always, please feel free to leave feedback regarding this post in the comments section below.

Continue reading The Chimp That Pimps And An Introduction to e.MMC Flash Memory Forensics