High Voltage Switching with MOSFETs

Using a MOSFET as a switch is generally pretty simple. Make the gate voltage sufficient with respect to the source and current flows through the channel. However, if you are switching higher voltages, you may need some additional circuitry to protect the device’s gate and possibly the microcontroller driving the whole thing, too. [Lewis] discusses high voltage switching in the latest in his series of videos dealing with MOSFETs. You can see the video below.

You’ll see in the video a breadboard setup driving a 50 V load and also a higher-voltage H-bridge. There are three major topics covered: Using …read more

Continue reading High Voltage Switching with MOSFETs

Biasing That Transistor Part 4: Don’t Forget the FET

Over the recent weeks here at Hackaday, we’ve been taking a look at the humble transistor. In a series whose impetus came from a friend musing upon his students arriving with highly developed knowledge of microcontrollers but little of basic electronic circuitry, we’ve examined the bipolar transistor in all its configurations. It would however be improper to round off the series without also admitting that bipolar transistors are only part of the story. There is another family of transistors which have analogous circuit configurations to their bipolar cousins but work in a completely different way: the Field Effect Transistors, or …read more

Continue reading Biasing That Transistor Part 4: Don’t Forget the FET

The Pros and Cons of Microcontrollers for Boost Converters

It never fails — we post a somewhat simple project using a microcontroller and someone points out that it could have been accomplished better with a 555 timer or discrete transistors or even a couple of vacuum tubes. We welcome the critiques, of course; after all, thoughtful feedback is the point of the comment section. Sometimes the anti-Arduino crowd has a point, but as [Great Scott!] demonstrates with this microcontroller-less boost converter, other times it just makes sense to code your way out of a problem.

Built mainly as a comeback to naysayers on his original boost-converter circuit, which relied …read more

Continue reading The Pros and Cons of Microcontrollers for Boost Converters

VFD Puts the Suck Back into Desoldering Station

A dedicated desoldering station is a fantastic tool if you’re in the business of harvesting components from old gear. Having heat and suction in a single tool is far more convenient than futzing with spring-loaded solder suckers or braid, but only as long as the suction in the desoldering tool has a little oomph behind it. So if the suction on your solder sucker is starting to suck, this simple VFD can help restore performance.

Luckily for [Mr. Carlson], his Hakko 470 desoldering station is equipped with an AC induction motor, so it’s a perfect candidate for a variable frequency …read more

Continue reading VFD Puts the Suck Back into Desoldering Station

Modified Uke Keeps the Beat with a Solenoid

A classic one-man band generally features a stringed instrument or two, a harmonica in a hands-free holder, and some kind of percussion, usually a bass drum worn like a backpack and maybe some cymbals between the knees. The musician might also knock or tap the sound-boards of stringed instruments percussively with their strumming hand, which is something classical and flamenco guitarists can pull off with surprising range.

The musician usually has to manipulate each instrument manually. When it comes to percussion, [JimRD] has another idea: keep the beat by pounding the soundboard with a solenoid. He built a simple Arduino-driven …read more

Continue reading Modified Uke Keeps the Beat with a Solenoid

Reed Organ MIDI Conversion Tickles All 88 Keys

What did you do in high school? Chances are it wasn’t anywhere near as cool as turning a reed organ into a MIDI device. And even if you managed to pull something like that off, did you do it by mechanically controlling all 88 keys? Didn’t think so.

A reed organ is a keyboard instrument that channels moving air over sets of tuned brass reeds to produce notes. Most are fairly complex affairs with multiple keyboards and extra controls, but the one that [Willem Hillier] scored for free looks almost the same as a piano. Even with the free instrument …read more

Continue reading Reed Organ MIDI Conversion Tickles All 88 Keys

Super simple controller for Motorcycle LED lights

For automobiles, especially motorcycles, auxiliary lighting that augments the headlights can be quite useful, particularly when you need to drive/ride through foggy conditions and poorly lit or unlit roads and dirt tracks. Most primary lighting on vehicles still relies on tungsten filament lamps which have very poor efficiency. The availability of cheap, high-efficiency LED modules helps add additional lighting to the vehicle without adding a lot of burden on the electrical supply. If you want to add brightness control, you need to either buy a dimmer module, or roll your own. [PatH] from WhiskeyTangoHotel choose the latter route, and built  …read more

Continue reading Super simple controller for Motorcycle LED lights

Let’s Play Spot The Fake MOSFET

Recently, the voice push to talk circuit in [Ryan]’s BITX40 radio was keyed down for a very long time. Blue smoke was released, a MOSFET was burnt out, and [Ryan] needed a new IRF510 N-channel MOSFET. Not a problem; this is a $1 in quantity one, but shipping from Mouser or Digikey will always kill you if you only buy one part at a time. Instead, [Ryan] found a supplier for five of these MOSFETs for $6 shipped. This was a good deal and a bad move because those new parts were fakes. Now we have an opportunity to play …read more

Continue reading Let’s Play Spot The Fake MOSFET

Hacked Sea Scooter Lives Another Day

The Seadoo GTI Sea Scooter is a simple conveyance, consisting of a DC motor and a big prop in a waterproof casing. By grabbing on and firing the motor, it can be used to propel oneself underwater. However, [ReSearchITEng] had problems with their unit, and did what hackers do best – cracked it open to solve the problem.

Investigation seemed to suggest there were issues with the logic of the motor controller. The original circuit had a single FET, potentially controlled through PWM.  The user interfaced with the controller through a reed switch, which operates magnetically. Using reed switches is …read more

Continue reading Hacked Sea Scooter Lives Another Day

Beefy 100 Amp Electronic Load uses Two MOSFETs

[Kerry Wong] had some extreme MOSFETs (IXTK90N25L2) and decided to create a high current electronic load. The result was a two-channel beast that can handle 50 A per channel. Together, they can sink 400 W and can handle a peak of 1 kW for brief periods. You can see a demo in the video below.

An electronic load is essentially a load resistor you can connect to a source and the resistance is set by an input voltage. So if the load is set to 10 A and you connect it to a 12 V source, the MOSFET should look …read more

Continue reading Beefy 100 Amp Electronic Load uses Two MOSFETs