Security roundup: Top AI stories in 2024

2024 has been a banner year for artificial intelligence (AI). As enterprises ramp up adoption, however, malicious actors have been exploring new ways to compromise systems with intelligent attacks. With the AI landscape rapidly evolving, it’s worth looking back before moving forward. Here are our top five AI security stories for 2024. Can you hear […]

The post Security roundup: Top AI stories in 2024 appeared first on Security Intelligence.

Continue reading Security roundup: Top AI stories in 2024

Trust Issues in AI

This essay was written with Nathan E. Sanders. It originally appeared as a response to Evgeny Morozov in Boston Review‘s forum, “The AI We Deserve.”

For a technology that seems startling in its modernity, AI sure has a long history. Google Translate, OpenAI chatbots, and Meta AI image generators are built on decades of advancements in linguistics, signal processing, statistics, and other fields going back to the early days of computing—and, often, on seed funding from the U.S. Department of Defense. But today’s tools are hardly the intentional product of the diverse generations of innovators that came before. We agree with Morozov that the “refuseniks,” as he …

Continue reading Trust Issues in AI

Race Condition Attacks against LLMs

These are two attacks against the system components surrounding LLMs:

We propose that LLM Flowbreaking, following jailbreaking and prompt injection, joins as the third on the growing list of LLM attack types. Flowbreaking is less about whether prompt or response guardrails can be bypassed, and more about whether user inputs and generated model outputs can adversely affect these other components in the broader implemented system.

[…]

When confronted with a sensitive topic, Microsoft 365 Copilot and ChatGPT answer questions that their first-line guardrails are supposed to stop. After a few lines of text they halt—seemingly having “second thoughts”—before retracting the original answer (also known as Clawback), and replacing it with a new one without the offensive content, or a simple error message. We call this attack “Second Thoughts.”…

Continue reading Race Condition Attacks against LLMs

This Week in Security: Linux VMs, Real AI CVEs, and Backscatter TOR DoS

Steve Ballmer famously called Linux “viral”, with some not-entirely coherent complaints about the OS. In a hilarious instance of life imitating art, Windows machines are now getting attacked through malicious …read more Continue reading This Week in Security: Linux VMs, Real AI CVEs, and Backscatter TOR DoS

Prompt Injection Defenses Against LLM Cyberattacks

Interesting research: “Hacking Back the AI-Hacker: Prompt Injection as a Defense Against LLM-driven Cyberattacks“:

Large language models (LLMs) are increasingly being harnessed to automate cyberattacks, making sophisticated exploits more accessible and scalable. In response, we propose a new defense strategy tailored to counter LLM-driven cyberattacks. We introduce Mantis, a defensive framework that exploits LLMs’ susceptibility to adversarial inputs to undermine malicious operations. Upon detecting an automated cyberattack, Mantis plants carefully crafted inputs into system responses, leading the attacker’s LLM to disrupt their own operations (passive defense) or even compromise the attacker’s machine (active defense). By deploying purposefully vulnerable decoy services to attract the attacker and using dynamic prompt injections for the attacker’s LLM, Mantis can autonomously hack back the attacker. In our experiments, Mantis consistently achieved over 95% effectiveness against automated LLM-driven attacks. To foster further research and collaboration, Mantis is available as an open-source tool: …

Continue reading Prompt Injection Defenses Against LLM Cyberattacks

Subverting LLM Coders

Really interesting research: “An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection“:

Abstract: Large Language Models (LLMs) have transformed code com-
pletion tasks, providing context-based suggestions to boost developer productivity in software engineering. As users often fine-tune these models for specific applications, poisoning and backdoor attacks can covertly alter the model outputs. To address this critical security challenge, we introduce CODEBREAKER, a pioneering LLM-assisted backdoor attack framework on code completion models. Unlike recent attacks that embed malicious payloads in detectable or irrelevant sections of the code (e.g., comments), CODEBREAKER leverages LLMs (e.g., GPT-4) for sophisticated payload transformation (without affecting functionalities), ensuring that both the poisoned data for fine-tuning and generated code can evade strong vulnerability detection. CODEBREAKER stands out with its comprehensive coverage of vulnerabilities, making it the first to provide such an extensive set for evaluation. Our extensive experimental evaluations and user studies underline the strong attack performance of CODEBREAKER across various settings, validating its superiority over existing approaches. By integrating malicious payloads directly into the source code with minimal transformation, CODEBREAKER challenges current security measures, underscoring the critical need for more robust defenses for code completion…

Continue reading Subverting LLM Coders