Hackaday Prize Entry: Adaptive Guitar

Due to a skiing accident, [Joe]’s new friend severed the motor nerves controlling her left arm. Sadly she was an avid musician who loved to play guitar — and of course, a guitar requires two hands. Or does it? Pressing the string to play the complex chords is more easily done using fingers, but strumming the strings could be done electromechanically under the control of a foot pedal. At least that’s the solution [Joe] implemented so beautifully when his friend’s family reached out for help.

There are just so many things to enjoy while reading through [Joe]’s project logs on …read more

Continue reading Hackaday Prize Entry: Adaptive Guitar

Hackaday Prize Entry: Adaptive Guitar

Due to a skiing accident, [Joe]’s new friend severed the motor nerves controlling her left arm. Sadly she was an avid musician who loved to play guitar — and of course, a guitar requires two hands. Or does it? Pressing the string to play the complex chords is more easily done using fingers, but strumming the strings could be done electromechanically under the control of a foot pedal. At least that’s the solution [Joe] implemented so beautifully when his friend’s family reached out for help.

There are just so many things to enjoy while reading through [Joe]’s project logs on …read more

Continue reading Hackaday Prize Entry: Adaptive Guitar

Hackaday Prize Entry: 3D Printed Linear Actuator Does 2kg+

The rabbit hole of features and clever hacks in [chiprobot]’s NEMA17 3D Printed Linear Actuator is pretty deep. Not only can it lift 2kg+ of mass easily, it is mostly 3D printed, and uses commonplace hardware like a NEMA 17 stepper motor and a RAMPS board for motion control.

The main 3D printed leadscrew uses a plug-and-socket design so that the assembly can be extended easily to any length desired without needing to print the leadscrew as a single piece. The tip of the actuator even integrates a force sensor made from conductive foam, which changes resistance as it is …read more

Continue reading Hackaday Prize Entry: 3D Printed Linear Actuator Does 2kg+

Hackaday Prize Entry: 3D Printed Linear Actuator Does 2kg+

The rabbit hole of features and clever hacks in [chiprobot]’s NEMA17 3D Printed Linear Actuator is pretty deep. Not only can it lift 2kg+ of mass easily, it is mostly 3D printed, and uses commonplace hardware like a NEMA 17 stepper motor and a RAMPS board for motion control.

The main 3D printed leadscrew uses a plug-and-socket design so that the assembly can be extended easily to any length desired without needing to print the leadscrew as a single piece. The tip of the actuator even integrates a force sensor made from conductive foam, which changes resistance as it is …read more

Continue reading Hackaday Prize Entry: 3D Printed Linear Actuator Does 2kg+

Hackaday Prize Entry: Customizable Linear Actuators

The current state of robotics, 3D printers, and CNC machines means any shade tree roboticist has the means to make anything move. Do you want a robotic arm? There are a dozen designs already available. Need an inverted powered pendulum? There are a hundred senior projects on that every semester. There is, however, one type of actuator that is vastly underutilized. Linear actuators aren’t ‘maker’ friendly, and building a customized linear actuator is an exercise in pain.

For their Hackaday Prize entry, the folks at Deezmaker are changing the state of linear actuators. They’ve created ‘Maker Muscle’, a linear actuator …read more

Continue reading Hackaday Prize Entry: Customizable Linear Actuators

Hidden Bookshelf Door Shows Incredible Motion

Who didn’t dream of a hidden door or secret passage in the house when they were kids? Some of us still do! [SPECTREcat] had already built a secret door in a fully functioning bookcase with a unique opening mechanism. The intriguing mechanism allows the doors to start by sliding slightly away form one another before hinging into the hidden space. Their operation was, however, was manual. The next step was to automate the secret door opening mechanism with electronics.

The project brain is an off-the-shelf Arduino Uno paired with a MultiMoto Arduino shield to drive 4 Progressive Automations PA-14 linear …read more

Continue reading Hidden Bookshelf Door Shows Incredible Motion

PLC and Linear Actuators Automate Double-Hung Windows

Very few residential architectural elements lend themselves to automation, with doors and windows being particularly thorny problems. You can buy powered doors and windows, true, but you’ll pay a pretty penny and have to go through an expensive remodeling project to install them. Solving this problem is why this double-hung window automation project caught our eye.

Another reason we took an interest in this project is that [deeewhite] chose to use a PLC to control his windows. We don’t see much love for industrial automation controllers around here, what with the space awash in cheap and easy to use microcontrollers. …read more

Continue reading PLC and Linear Actuators Automate Double-Hung Windows

PLC and Linear Actuators Automate Double-Hung Windows

Very few residential architectural elements lend themselves to automation, with doors and windows being particularly thorny problems. You can buy powered doors and windows, true, but you’ll pay a pretty penny and have to go through an expensive remodeling project to install them. Solving this problem is why this double-hung window automation project caught our eye.

Another reason we took an interest in this project is that [deeewhite] chose to use a PLC to control his windows. We don’t see much love for industrial automation controllers around here, what with the space awash in cheap and easy to use microcontrollers. …read more

Continue reading PLC and Linear Actuators Automate Double-Hung Windows