Software Defined Radio Hack Chat

Join us on Wednesday, September 18 at noon Pacific for the Software Defined Radio Hack Chat with Corrosive!

If you’ve been into hobby electronics for even a short time, chances are you’ve got at least one software-defined radio lying around. From the cheap dongles originally intended to watch digital TV

…read more

Continue reading Software Defined Radio Hack Chat

Side-Channel Attack Shows Vulnerabilities of Cryptocurrency Wallets

What’s in your crypto wallet? The simple answer should be fat stacks of Bitcoin or Ethereum and little more. But if you use a hardware cryptocurrency wallet, you may be carrying around a bit fat vulnerability, too.

At the 35C3 conference last year, [Thomas Roth], [Josh Datko], and [Dmitry Nedospasov] …read more

Continue reading Side-Channel Attack Shows Vulnerabilities of Cryptocurrency Wallets

Your Table Is Ready, Courtesy Of HackRF

Have you ever found yourself in a crowded restaurant on a Saturday night, holding onto one of those little gadgets that blinks and vibrates when it’s your turn to be seated? Next time, bust out the HackRF and follow along with [Tony Tiger] as he shows how it can be …read more

Continue reading Your Table Is Ready, Courtesy Of HackRF

Desktop Radio Telescope Images The WiFi Universe

It’s been a project filled with fits and starts, and it very nearly ended up as a “Fail of the Week” feature, but we’re happy to report that the [Thought Emporium]’s desktop WiFi radio telescope finally works. And it’s pretty darn cool.

If you’ve been following along with the build like we have, you’ll know that this stems from a previous, much larger radio telescope that [Justin] used to visualize the constellation of geosynchronous digital TV satellites. This time, he set his sights closer to home and built a system to visualize the 2.4-GHz WiFi band. A simple helical antenna …read more

Continue reading Desktop Radio Telescope Images The WiFi Universe

Shmoocon: Delightful Doppler Direction Finding With Software Defined Radio

When it comes to finding what direction a radio signal is coming from, the best and cheapest way to accomplish the task is usually a Yagi and getting dizzy. There are other methods, and at Shmoocon this last weekend, [Michael Ossmann] and [Schuyler St. Leger] demonstrated pseudo-doppler direction finding using cheap, off-the-shelf software defined radio hardware.

The hardware for this build is, of course, the HackRF, but this pseudo-doppler requires antenna switching. That means length-matched antennas, and switching antennas without interrupts or other CPU delays. This required an add-on board for the HackRF dubbed the Opera Cake. This board is …read more

Continue reading Shmoocon: Delightful Doppler Direction Finding With Software Defined Radio

Reverse Engineering the Nintendo Wavebird

Readers who were firmly on Team Nintendo in the early 2000’s or so can tell you that there was no accessory cooler for the Nintendo GameCube than the WaveBird. Previous attempts at wireless game controllers had generally either been sketchy third-party accessories or based around IR, and in both cases the end result was that the thing barely worked. The WaveBird on the other hand was not only an official product by Nintendo, but used 2.4 GHz to communicate with the system. Some concessions had to be made with the WaveBird; it lacked rumble, was a bit heavier than the …read more

Continue reading Reverse Engineering the Nintendo Wavebird

CPLD-Based Synchronization of Multiple Software Defined Radios

Forgive the click bait headline, but the latest work from [Marco Bartolucci] and [José A. del Peral-Rosado] is really great. They’re using multiple HackRFs, synchronized together, with hybrid positioning algorithms to derive more precise localization accuracy. (PDF)

Like all SDRs, the HackRF can be used to solve positioning problems using WIFi, Bluetooth, 3G, 4G, and GNSS. Multiple receivers can also be used, but this requires synchronization for time-based or frequency-based ranging. [Bartolucci] and [Peral-Rosado] present a novel solution for synchronizing these HackRFs using a few convenient ports available on the board, a bit of CPLD hacking, and a GNSS receiver …read more

Continue reading CPLD-Based Synchronization of Multiple Software Defined Radios

Exposing Dinosaur Phone Insecurity With Software Defined Radio

Long before everyone had a smartphone or two, the implementation of a telephone was much stranger than today. Most telephones had real, physical buttons. Even more bizarrely, these phones were connected to other phones through physical wires. Weird, right? These were called “landlines”, a technology that shuffled off this mortal coil three or four years ago.

It gets even more bizarre. some phones were wireless — just like your smartphone — but they couldn’t get a signal more than a few hundred feet away from your house for some reason. These were ‘cordless telephones’. [Corrosive] has been working on …read more

Continue reading Exposing Dinosaur Phone Insecurity With Software Defined Radio

SDR and Node.js Remote-Controlled Monster Drift

Most old-school remote controlled cars broadcast their controls on 27 MHz. Some software-defined radio (SDR) units will go that low. The rest, as we hardware folks like to say, is a simple matter of coding.

So kudos to [watson] for actually doing the coding. His monster drift project starts with the basics — sine and cosine waves of the right frequency — and combines them in just the right durations to spit out to an SDR, in this case a HackRF. Watch the smile on his face as he hits the enter key and the car pulls off an epic …read more

Continue reading SDR and Node.js Remote-Controlled Monster Drift

Pokemon Go Cheat Fools GPS with Software Defined Radio

Using Xcode to spoof GPS locations in Pokemon Go (like we saw this morning) isn’t that much of a hack, and frankly, it’s not even a legit GPS spoof. After all, it’s not like we’re using an SDR to spoof the physical GPS signal to cheat Pokemon Go.

To [Stefan Kiese], this isn’t much more than an exercise. He’s not even playing Pokemon Go. To squeeze a usable GPS signal out of his HackRF One, a $300 Software Defined Radio, [Stefan] uses an external precision clock. This makes up for the insufficient calibration of the HackRF’s internal clock, although he …read more

Continue reading Pokemon Go Cheat Fools GPS with Software Defined Radio