Hackaday Prize Entry: An Internet Of Things Microscope

For their entry into the Citizen Scientist portion of the Hackaday Prize, the folks at Arch Reactor, the St. Louis hackerspace, are building a microscope. Not just any microscope – this one is low-cost, digital, and has a surprisingly high magnification and pretty good optics. It’s the Internet of Things Microscope, and like all good apparatus for Citizen Scientist, it’s a remarkable tool for classrooms and developing countries.

When you think of ‘classroom microscope’, you’re probably thinking about a pile of old optics sitting in the back of a storage closet. These microscopes are purely optical, without the ability to …read more

Continue reading Hackaday Prize Entry: An Internet Of Things Microscope

Hackaday Prize Entry: The Cheapest Logic Analyzer

There are piles of old 128MB and 256MB sticks of RAM sitting around in supply closets and in parts bins. For his Hackaday Prize project, [esot.eric] is turning these obsolete sticks of RAM into something useful – a big, fast logic analyzer. It’s cheap, and simple enough that it can be built on a breadboard.

If using old SDRAM in strange configurations seems familiar, you’re correct. This project is based on [esot.eric]’s earlier AVR logic analyzer project that used a slow AVR to measure 32 channels of logic at 30 megasamples per second. The only way this build was possible …read more

Continue reading Hackaday Prize Entry: The Cheapest Logic Analyzer

Hackaday Prize Entry: What The Flux

Electromagnetism is the most difficult thing teach. Why is electromagnetism hard to teach? Well, when you’re asking a ‘why’ question (obligatory Richard Feynman video)…

[Adam Smallcomb] might not be able to explain electromagnetism with perfect clarity, but he does have an idea to give students a hands-on feel for electrons and magnets. He’s building an Electromagnetic Teaching Aid that turns 30 gauge wire, springs, Lego, and bits of metal into a toolset for understanding magnets, solenoids, current, and magnetic fields.

The devices explained via [Adam]’s toolkit include a DC motor, stepper motor, speaker, solenoid, relay, transformer, microphone, and generator. That’s …read more

Continue reading Hackaday Prize Entry: What The Flux

Hackaday Prize: 20 Projects that Make Us All Citizen Scientists

We live in a time of unparalleled access to technology and this has the power to make life better for everyone. Today we are excited to announce twenty spectacular builds that use access to technology to move scientific exploration within the reach of all. These are the winners of the Citizen Scientist challenge of the 2016 Hackaday Prize. Themes tackled in this round include blood glucose monitoring, insole sensing for analyzing your footfalls, lab equipment like automated microscopy, sensors to measure the world around us, and more.

The winners for the Citizen Scientist portion of the Hackaday Prize are, in …read more

Continue reading Hackaday Prize: 20 Projects that Make Us All Citizen Scientists

Hackaday Prize Entry: A Better Way Of Cheating

Believe it or not, some video games are still developed for the PC. With video games come cheat codes, and when they’re on the PC, that means using a keyboard. You can easily program any microcontroller to send a string of characters over a USB port with the touch of a button. Believe it or not, a lot of people haven’t put these two facts together. [danjovic] has, leading him to build a simple and cheap USB keystroke generator for quickly typing in cheat codes.

[danjovic] is basing his build around a Digispark, a cheap, USB-enabled ATtiny85 dev board. This, …read more

Continue reading Hackaday Prize Entry: A Better Way Of Cheating

Hackaday Prize Entry: Measuring 3D Magnetic Fields [Needs Prize Footer]

Sometimes you have to start out with big goals. Ninth-graders [Finja Schneider] and [Myrijam Stoetzer] are aiming to make a magnetic field scanner that would be helpful in finding large underground metallic objects, like unexploded WWII bombs that pose a real threat whenever a new parking garage is excavated in Germany. But even big goals have to start out somewhere, so they’re gaining experience with the sensors and the math necessary to recreate 3D magnetic flux vector fields on household objects like sawblades and magnetized screwdrivers.

For their science-fair project, [Finja] and [Myrijam] took a mid-80s fischertechnik “toy” 2D scanner …read more

Continue reading Hackaday Prize Entry: Measuring 3D Magnetic Fields [Needs Prize Footer]

Hackaday Prize Entry: Linear Stepper Motors

Today, your average desktop 3D printer is a mess of belts, leadscrews, and pulleys. For his Hackaday Prize entry, [DeepSOIC] is eliminating them entirely. How’s he doing this? With a linear stepper motor.

Search Google for ‘linear stepper motor’ and you’ll find a bunch of NEMA-bodied motors with leadscrews down the middle. This is not a linear stepper motor. This is a stepper motor with a leadscrew down the middle. The motor [DeepSOIC] has in mind is more like a mashup of a rack gear and a maglev train. The ‘linear’ part of this motor is a track of magnets …read more

Continue reading Hackaday Prize Entry: Linear Stepper Motors

Hackaday Prize Entry: A Simple CNC

3D printers are all the rage, but there’s still space for more traditional CNC machines. For their Hackaday Prize entry, [Andy], [Tim], and [Chris] are building the Sienci Mill – a simple desktop CNC mill that’s able to cut drill and carve everything from wood to circuit boards.

As far as desktop CNC machines go, it doesn’t get much more simple than this. They’re using steel plates for the rails, NEMA 17s for the motors, and a simple stepper motor driver Arduino shield for the controller. The more complex parts are 3D printed, and the BOM doesn’t add up to …read more

Continue reading Hackaday Prize Entry: A Simple CNC

Hackaday Prize Entry: The World’s First Tampon Monitor

[Amanda], [Jacob], [Katherine], and [vyshaalij] had a class project for their ‘Critical Making’ class at UC Berkeley. The task was to design a ‘Neo-Wearable’ that would fulfill an unmet need. Realizing women make up about 50% of the population and experience monthly periods for about half of their lives, they decided to make what can only be described as a tampon monitor. It’s a small device that monitors the… uh… ‘fullness’ of a tampon. Yes, it’s wearable technology that is actually useful, and a great entry for the Hackaday Prize.

The my.Flow, as the team are calling it, uses mechanical …read more

Continue reading Hackaday Prize Entry: The World’s First Tampon Monitor

Hackaday Prize Entry: Electronics Anywhere, Any Time

There has always been a need for electronic graph paper – a digital device that records ones and zeros, writes bits, and keeps track of analog voltages. Many moons ago, this sort of device was graph paper, wrapped around a drum, slowly spinning around once per day. With the advent of cheap, powerful microcontrollers and SD cards these devices have become even more capable.

For their entry to the Hackaday Prize, [Kuldeep] and [Sandeep] have built Box0. It’s a lab in a bag, an open source data acquisition unit, and a USB device that toggles pins, all in one simple …read more

Continue reading Hackaday Prize Entry: Electronics Anywhere, Any Time