Autonomous Spaceplane Travels to 10 km, Lands Safely 200 km Away

Space balloons, where one sends instrument packages to the edge of space on a weather balloon, are a low-cost way to scratch the space itch. But once you’ve logged the pressure and temperature and tracked your balloon, what’s the next challenge? How about releasing an autonomous glider and having it return itself to Earth safely?

That’s what [IzzyBrand] and his cohorts did, and we have to say we’re mightily impressed. The glider itself looks like nothing to write home about: in true Flite Test fashion, it’s just a flying wing made with foam core and Coroplast reinforced with duct tape. …read more

Continue reading Autonomous Spaceplane Travels to 10 km, Lands Safely 200 km Away

An Interview with Alex Williams, Grand Prize Winner

Alex Williams pulled off an incredible engineering project. He developed an Autonomous Underwater Vehicle (AUV) which uses a buoyancy engine rather than propellers as its propulsion mechanism and made the entire project Open Source and Open Hardware.

The design aims to make extended duration missions a possibility by using very little power to move the vessel. What’s as remarkable as the project itself is that Alex made a goal for himself to document the project to the level that it is fully reproducible. His success in both of these areas is what makes the Open Source Underwater Glider the perfect …read more

Continue reading An Interview with Alex Williams, Grand Prize Winner

Automate the Freight: Front Line Deliveries by Drone

Gen. Robert H. Barrow, USMC, once said that “Amateurs talk about tactics, but professionals study logistics.” That’s true in many enterprises, but in warfare, the side that neglects logistics is likely to be the loser. Keeping soldiers fed, clothed, and armed is the very essence of effectively prosecuting a war, and the long logistical chain from rear supply depots to forward action is what makes that possible.

Armies have had millennia to optimize logistics, and they have always maximized use of new technologies to position supplies where they’re needed. Strong backs of men and beasts sufficed for centuries, supplemented by …read more

Continue reading Automate the Freight: Front Line Deliveries by Drone

Hackaday Prize Entry: Underwater Glider Offers Low-Power Exploration

[Alex Williams] created his Open Source Underwater Glider project as an entry to The Hackaday Prize, and now it’s one of our twenty finalists. This sweet drone uses motor-actuated syringes to serve as a ballast tank, which helps the glider move forward without the use of traditional propellers.

Unlike most UAVs, which use motors to actively move the craft around, [Alex]’s glider uses the syringes to change the buoyancy of the craft, and it simply glides around on its wings. When the craft starts getting too deep, the syringes push out the water and the glider rises toward the surface …read more

Continue reading Hackaday Prize Entry: Underwater Glider Offers Low-Power Exploration

The Wright Flyer: Engineering And Iterating

The types of steps and missteps the Wright brothers took in developing the first practical airplane should be familiar to hackers. They started with a simple kite design and painstakingly added only a few features at a time, testing each, and discarding some. The airfoil data they had was wrong and they had to make their own wind tunnel to produce their own data. Unable to find motor manufacturers willing to do a one-off to their specifications, they had to make their own.

Sound familiar? Here’s a trip through the Wright brothers development of the first practical airplane.

Starting Out:

…read more

Continue reading The Wright Flyer: Engineering And Iterating