RISC-V CPU Gets A Peripheral

One of the ways people use FPGAs is to have part of the FPGA fabric hold a CPU. That makes sense because CPUs are good at some jobs that are hard to do with an FPGA, and vice versa. Now that the RISC-V architecture is available it makes sense that it can be used as an FPGA-based CPU. [Clifford Wolf] created PicoSOC — a RISC-V CPU made to work as a SOC or System on Chip with a Lattice 8K evaluation board. [Mattvenn] ported that over to a TinyFPGA board that also contains a Lattice FPGA and shows an example …read more

Continue reading RISC-V CPU Gets A Peripheral

Quick Face Recognition With An FPGA

It’s the 21st century, and according to a lot of sci-fi movies we should have perfected AI by now, right? Well we are getting there, and this project from a group of Cornell University students titled, “FPGA kNN Recognition” is a graceful attempt at facial recognition.

For the uninitiated, the K-nearest neighbors or kNN Algorithm is a very simple classification algorithm that uses similarities between given sets of data and a data point being examined to predict where the said data point belongs. In this project, the authors use a camera to take an image and then save its histogram …read more

Continue reading Quick Face Recognition With An FPGA

FPGA Testbenches Made Easier

You finally finish writing the Verilog for that amazing new DSP function that will revolutionize human society and make you rich. Does it work? Your first instinct, of course, is to blow it into your FPGA of choice and see if it works. If it does, that was a great idea. If it doesn’t, it was a terrible idea because — typically — it is hard to look inside the FPGA. That’s why you’ll typical simulate your logic on a desktop computer before you commit it to the FPGA. But that means you have to delay gratification long enough to …read more

Continue reading FPGA Testbenches Made Easier

X-Ray Vision for FPGAs: Using Verifla

Last time I talked about how I took the open source Verifla logic analyzer and modified it to have some extra features. As promised, this time I want to show it in action, so you can incorporate it into your own designs. The original code didn’t actually capture your data. Instead, it created a Verilog simulation that would produce identical outputs to your FPGA. If you were trying to do some black box simulation, that probably makes sense. I just wanted to view data, so I created a simple C program that generates a VCD file you can read with …read more

Continue reading X-Ray Vision for FPGAs: Using Verifla

Hands on with the Arduino FPGA

All of the tools you need to work with the FPGA Arduino — the Vidor — are now in the wild!

We reported earlier that a series of French blog posts finally showed how all the pieces fit together to program the FPGA on the Arduino MKR4000 Vidor board. Of course, I wasn’t content to just read the Google translation, I had to break out the board and try myself.

I created a very simple starter template, a tool in C to do the bitstream conversion, required, and bundled it all together in one place. Here’s how you can use …read more

Continue reading Hands on with the Arduino FPGA

Flash: Arduino Vidor FPGA Instructions Hit France

If you speak French and you have an Arduino Vidor 4000, you are in luck because there’s some good news. The good news is there’s finally some inside information about how to configure the onboard FPGA yourself. The bad news though is that it is pretty sparse. If your high school French isn’t up to the task, there’s always Google Translate.

We knew some of this already. You’ll need Quartus, the FPGA design tool from Altera — er, Intel — and we know about the sample project on GitHub, too. Instead of using conventional Verilog or VHDL, the new information …read more

Continue reading Flash: Arduino Vidor FPGA Instructions Hit France

Logic Analyzers for FPGAs: A Verilog Odyssey

Sometimes you start something simple and then it just leads to a chain reaction of things. I wanted to write a post about doing state machines in Verilog and target the Lattice iCEstick board that we often use for quick FPGA projects. That led to a small problem: how do you show what’s going on inside? In this series of posts, we’ll look at building a logic analyzer into an FPGA to help debug itself, instantiating memory, and — finally — state machines.

Logic analysis is a common tool in FPGA development. If you use Altera, they have Signal Tap …read more

Continue reading Logic Analyzers for FPGAs: A Verilog Odyssey

Friday Hack Chat: FPGA Bootcamp

For this week’s Hack Chat, we’re going to be talking all about FPGAs, with our own resident FPGA expert.

This summer, Hackaday.io launched FPGA bootcamps, simple, easy-to-follow tutorials that will get you up and running with Verilog. These were all done by Al Williams, Hackaday’s resident FPGA hacker. Al’s an electrical engineer, author of over thirty books, countless magazine articles, and thousands of blog posts. He’s been an amateur radio operator for 41 years, and his first computer used an 1802 chip.

Now Al is putting a little bit of his wisdom over on Hackaday.io. He’s written up a bunch …read more

Continue reading Friday Hack Chat: FPGA Bootcamp

Programming A RISC-V Softcore With Ada

We were contacted by [morbo] to let us know about a project on the AdaCore blog that concerns programming a PicoRV32 RISC-V softcore with Ada. The softcore itself runs on a Lattice ICE40LP8K-based TinyFPGA-BX FPGA board, which we have covered in the past.

The blog post describes how to use the Community edition of the GNAT Ada compiler to set up the development environment, before implementing a simple example project that controls a strip of WS28212b RGB LED modules. There are two push buttons changing the animation and brightness of the lights.

The source can be found at the author’s …read more

Continue reading Programming A RISC-V Softcore With Ada

Easy FPGA CPU with MAX1000

Ok, we’ll admit it. We like FPGAs because it reminds us of wiring up a 100-in-1 kit when we were kids. But the truth is, many projects are just as well off to have a CPU. But there’s a real sweet spot when you have a CPU and an FPGA together. Intel (or Altera, if you prefer) has the NIOS II CPU core, but that’s hard to configure, right? Maybe not, thanks to a project by [jefflieu] over on GitHub. He’s assembled some basic definitions and libraries to easily — relatively speaking — use NIOS II on the MAX1000 as …read more

Continue reading Easy FPGA CPU with MAX1000