Hack Together Your Own Bat Signal

Bats use echolocation to see objects in front of them. They emit an ultrasonic pulse around 20 kHz (and up to 100 kHz) and then sense the pulses as they reflect off an object and back to the bat. It’s the same type of mechanism used by ultrasonic proximity sensors …read more

Continue reading Hack Together Your Own Bat Signal

Dual Sensor Echo Locator Gives High Accuracy at Low Cost

Infrared certainly has its uses, but if you’re trying to locate objects, ultrasonic detection is far superior. It’s contact-less, undetectable to the human ear, and it isn’t affected by smoke, dust, ambient light, or Silly String.

If you have one ultrasonic sensor and a microcontroller, you can detect plenty of useful things, like the water level in a rain barrel or the distance traveled by a tablet along a rail. If you have two sensors and a microcontroller, you can pinpoint any object within a defined range using trigonometry.

[lingib]’s dual sensor echo locator uses two HY-SRF05s, but the cheap …read more

Continue reading Dual Sensor Echo Locator Gives High Accuracy at Low Cost

Hackaday Prize Entry: SNAP Is Almost Geordi La Forge’s Visor

Echolocation projects typically rely on inexpensive distance sensors and the human brain to do most of the processing. The team creating SNAP: Augmented Echolocation are using much stronger computational power to translate robotic vision into a 3D soundscape.

The SNAP team starts with an Intel RealSense R200. The first part of the processing happens here because it outputs a depth map which takes the heavy lifting out of robotic vision. From here, an AAEON Up board, packaged with the RealSense, takes the depth map and associates sound with the objects in the field of view.

Binaural sound generation is a …read more

Continue reading Hackaday Prize Entry: SNAP Is Almost Geordi La Forge’s Visor