Design and 3D Print Robots with Interactive Robogami

Robot design traditionally separates the body geometry from the mechanics of the gait, but they both have a profound effect upon one another. What if you could play with both at once, and crank out useful prototypes cheaply using just about any old 3D printer? That’s where Interactive Robogami comes in. It’s a tool from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) that aims to let people design, simulate, and then build simple robots with a “3D print, then fold” approach. The idea behind the system is partly to take advantage of the rapid prototyping afforded by 3D printers, …read more

Continue reading Design and 3D Print Robots with Interactive Robogami

Measuring Walking Speed Wirelessly

There are a lot of ways to try to mathematically quantify how healthy a person is. Things like resting pulse rate, blood pressure, and blood oxygenation are all quite simple to measure and can be used to predict various clinical outcomes. However, one you may not have considered is gait velocity, or the speed at which a person walks. It turns out gait velocity is a viable way to predict the onset of a wide variety of conditions, such as congestive heart failure or chronic obtrusive pulmonary disease. It turns out, as people become sick, elderly or infirm, they tend …read more

Continue reading Measuring Walking Speed Wirelessly

How To Telepathically Tell A Robot It Screwed Up

Training machines to effectively complete tasks is an ongoing area of research. This can be done in a variety of ways, from complex programming interfaces, to systems that understand commands in natural langauge. A team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) wanted to see if it was possible for humans to communicate more directly when training a robot. Their system allows a user to correct a robot’s actions using only their brain.

The concept is simple – using an EEG cap to detect brainwaves, the system measures a special type of brain signals called “error-related potentials”. Simply …read more

Continue reading How To Telepathically Tell A Robot It Screwed Up

Robots With 3D Printed Shock Absorbing Skin

MIT’s Computer Science and Artificial Intelligence Laboratory, CSAIL, put out a paper recently about an interesting advance in 3D printing. Naturally, being the computer science and AI lab the paper had a robotic bend to it. In summary, they can 3D print a robot with a rubber skin of arbitrarily varying stiffness. The end goal? Shock absorbing skin!

They modified an Objet printer to print simultaneously using three materials. One is a UV curing solid. One is a UV curing rubber, and the other is an unreactive liquid. By carefully depositing these in a pattern they can print a material …read more

Continue reading Robots With 3D Printed Shock Absorbing Skin

Interactive Dynamic Video

If a picture is worth a thousand words, a video must be worth millions. However, computers still aren’t very good at analyzing video. Machine vision software like OpenCV can do certain tasks like facial recognition quite well. But current software isn’t good at determining the physical nature of the objects being filmed. [Abe Davis, Justin G. Chen, and Fredo Durand] are members of the MIT Computer Science and Artificial Intelligence Laboratory. They’re working toward a method of determining the structure of an object based upon the object’s motion in a video.

The technique relies on vibrations which can be captured …read more

Continue reading Interactive Dynamic Video