A Game That Does More With Less

[David Johnson-Davies] created a minimal Secret Maze Game using a single ATTiny85 and a few common components. This simple game uses four buttons, four LEDs, and a small speaker. The player moves in the four cardinal directions using buttons, and the LEDs show walls and corridors. If an LED is lit, it means the path in that direction is blocked by a wall, and attempting to move in that direction will make a beep. When the player reaches the exit, a short victory tune chirps from the speaker.

Since the ATTiny85 has only five I/O lines, [David] had to get …read more

Continue reading A Game That Does More With Less

New Method for Measuring Lots of Resistors Using Very Few Wires

[Daqq] is back at it again with the linear algebra, and he’s now come up with a method for determining the resistance of lots of resistors using little of wires and loads of math.

Like any reasonable person, [daqq] decided it would be fun to “solve one of those nasty [electrical engineering] puzzles/exercises where you start out with a horrible mess of wires and resistors and you are supposed to calculate the resistance between two nodes.” You know, just an average Saturday night. At the time, he was also fascinated by Charlieplexing – an awesome technique that either allows one …read more

Continue reading New Method for Measuring Lots of Resistors Using Very Few Wires

New Method for Measuring Lots of Resistors Using Very Few Wires

[Daqq] is back at it again with the linear algebra, and he’s now come up with a method for determining the resistance of lots of resistors using little of wires and loads of math.

Like any reasonable person, [daqq] decided it would be fun to “solve one of those nasty [electrical engineering] puzzles/exercises where you start out with a horrible mess of wires and resistors and you are supposed to calculate the resistance between two nodes.” You know, just an average Saturday night. At the time, he was also fascinated by Charlieplexing – an awesome technique that either allows one …read more

Continue reading New Method for Measuring Lots of Resistors Using Very Few Wires

Hackaday Prize Entry: Micro Matrix Charlieplexed Displays

If you need a very thin, low power display that doesn’t use a whole bunch of pins on your microcontroller, [bobricius] has just the thing for you. His entry to the Hackaday Prize this year is a Charlieplexed LED display. With this board, you can drive 110 LEDs using only 11 GPIO pins.

Charlieplexing is a bit of a dark art around these parts. That’s not to say the theory is difficult; it’s really just sourcing or sinking current from a GPIO pin and arranging LEDs unparallel to each other. The theory is one thing, implementation is another. To build …read more

Continue reading Hackaday Prize Entry: Micro Matrix Charlieplexed Displays

World’s Smallest LED Cube – Again

There’s a new challenger on the block for the title of the “Worlds Smallest 4x4x4 RGB LED Cube“. At 13x13x36 mm, [nqtronix]’s Cube Pendant is significantly smaller than [HariFun’s] version, which measures in at about 17x17x17 mm just for the cube, plus the external electronics. It took about a year for [nqtronix] to claim this spot, and from reading the comments section, it seems [HariFun] isn’t complaining. The Cube Pendant is small enough to be used as a key fob, and [nqtronix] has managed to really cram a lot of electronics in it.

The LED’s used are 0606 RGB’s which …read more

Continue reading World’s Smallest LED Cube – Again

7 LED’s, 2 Pins – beat that, Charlieplexing

[Tim]’s Dice10 is an exercise in minimalism. Building an electronic dice using an ATtiny10 with code that fits within 1kB is not too difficult. Charlieplexing the LED’s would have used three of the four available GPIO pins. [Tim] upped the game by using just two GPIO pins to drive the seven LED’s for the dice. A third GPIO is used as a touch button input. Besides the ATtiny and the LED’s, the only other component used is a capacitor across the supply inputs.

The LED’s are grouped in three pairs of two LED’s and a single centre LED. Usually, Charlieplexed …read more

Continue reading 7 LED’s, 2 Pins – beat that, Charlieplexing

Charliplexed 7-Segment Display Takes Advantage of PCB Manufacturers

Cutting out precise shapes requires a steady hand, a laser cutter, or a CNC mill, right? Nope! All you need is PCB design software and a fabrication facility that’ll do the milling for you. That’s the secret sauce in [bobricius]’s very pleasing seven-segment display design.

His Hackaday.io entry doesn’t have much detail beyond the pictures and the board files, but we’re not sure we need that many either. The lowest board in the three-board stack has Charlieplexed LEDs broken out to six control pins. Next up is a custom-routed spacer board — custom routed by the PCB house, that is. …read more

Continue reading Charliplexed 7-Segment Display Takes Advantage of PCB Manufacturers

Hackaday Prize Entry: A Charlieplexed Wristwatch

If there’s one thing we like, it’s blinky stuff, and you’re not going to get anything cooler than a display made of tiny SMD LEDs. That’s the idea behind this wristwatch and Hackaday Prize entry. It’s a tiny board, loaded up with an ATmega, a few buttons, and a bunch of LEDs in a big charlieplexed array.

The big feature of this display is the array of LEDs. This is a 16×5 array of 0603 LEDs packed together as tightly as possible. That’s a tiny, high-resolution LED display, but even with the ATmega88 microcontroller powering this board, all the LEDs …read more

Continue reading Hackaday Prize Entry: A Charlieplexed Wristwatch