A 3D-Printed Robot Actuator

Somehow, walking robots at our level never really seem to deliver on the promise that should be delivered by all those legs. Articulation using hobby servos is simple enough to achieve, but cumbersome, slow, and not very powerful. [Paul Gould] has a plan to make a better, 3D-printed articulated robot actuator.

His solution is both novel and elegant, a fairly conventional arm geometry that has at its joints a set of brushless motors similar to but a little larger than the kind you might be more familiar with on multirotors, paired with 3D-printed cycloidal gearboxes. Magnetic encoders provide the necessary …read more

Continue reading A 3D-Printed Robot Actuator

3000W Unicycle’s Only Limitation Is “Personal Courage”

Electric vehicles are fertile ground for innovation because the availability of suitable motors, controllers, and power sources makes experimentation accessible even to hobbyists. Even so, [John Dingley] has been working on such vehicles since about 2009, and his latest self-balancing electric unicycle really raises the bar by multiple notches. It sports a monstrous 3000 Watt brushless hub motor intended for an electric motorcycle, and [John] was able to add numerous touches such as voice feedback and 1950’s styling using surplus aircraft and motorcycle parts. To steer, the frame changes shape slightly with help of the handlebars to allow the driver’s …read more

Continue reading 3000W Unicycle’s Only Limitation Is “Personal Courage”

Watch This Tiny Dome Auto-open and Close into a Propeller

Careful planning and simulation is invaluable, but it can also be rewarding to dive directly into prototyping. This is the approach [Carl Bugeja] took with his Spherical Folding Propeller design which he has entered into the Open Hardware Design Challenge category of The 2018 Hackaday Prize. While at rest, the folding propeller looks like a small dome attached to the top of a motor. As the motor fires up, centrifugal forces cause the two main halves of the dome to unfold outward where they act as propeller blades. When the motor stops, the assembly snaps shut again.

[Carl] has done …read more

Continue reading Watch This Tiny Dome Auto-open and Close into a Propeller

Analyzing Hobby Motors with an Oscilloscope

We always like finding new excuses reasons to use our test equipment, so we couldn’t help but be intrigued by this tip from [Joe Mosfet]. He uses the ever-popular Rigol DS1054Z to demonstrate the differences between a handful of brushless motors when rotated by his handheld drill at a constant RPM. Not only is he able to identify a blown motor, but it allows him to visualize their specifications which can otherwise seem a bit mystifying.

One wire from each motor is used as the ground, and channels one and two are connected to the remaining wires. Despite the DS1054Z …read more

Continue reading Analyzing Hobby Motors with an Oscilloscope

Here’s Why Hoverboard Motors Might Belong In Robots

[madcowswe] starts by pointing out that the entire premise of ODrive (an open-source brushless motor driver board) is to make use of inexpensive brushless motors in industrial-type applications. This usually means using hobby electric aircraft motors, but robotic applications sometimes need more torque than those motors can provide. Adding a gearbox is one option, but there is another: so-called “hoverboard” motors are common and offer a frankly outstanding torque-to-price ratio.

A teardown showed that the necessary mechanical and electrical interfacing look to be worth a try, so prototyping has begun. These motors are really designed for spinning a tire on …read more

Continue reading Here’s Why Hoverboard Motors Might Belong In Robots

Gorgeous Engineering Inside Wheels of a Robotic Trail Buddy

Robots are great in general, and [taylor] is currently working on something a bit unusual: a 3D printed explorer robot to autonomously follow outdoor trails, named Rover. Rover is still under development, and [taylor] recently completed the drive system and body designs, all shared via OnShape.

Rover has 3D printed 4.3:1 reduction planetary gearboxes embedded into each wheel, with off the shelf bearings and brushless motors. A Raspberry Pi sits in the driver’s seat, and the goal is to use a version of NVIDA’s TrailNet framework for GPS-free navigation of paths. As a result, [taylor] hopes to end up with …read more

Continue reading Gorgeous Engineering Inside Wheels of a Robotic Trail Buddy

Testing Brushless Motors with a Scope (or a Meter)

Brushless motors have a lot of advantages over traditional brushed motors. However, testing them can be a bit of a pain. Because the resistance of the motor’s coils is usually very low, a standard resistance check isn’t likely to be useful. Some people use LC meters, but those aren’t as common as a multimeter or oscilloscope. [Nils Rohwer] put out two videos — one two years ago and one recently — showing how to test a brushless motor with a multimeter or scope. Oh, you do need one other thing: a drill.

You don’t have to drill into the motor, …read more

Continue reading Testing Brushless Motors with a Scope (or a Meter)

Electric Longboard with All-New Everything

We love [lolomolo]’s Open Source electric longboard project. Why? Because he completely re-engineered everything while working on the project all through college. He tackled each challenge, be it electronic or mechanical as it came, and ended up making everything himself.

The 48″ x 13″ deck is a rather unique construction utilizing carbon fiber and Baltic birch. In testing the deck, [lolomol] found the deflection was less than an inch with 500 lbs. on the other end. He modified the Caliber II trucks to add four 2250W Turnigy Aerodrive brushless outrunners driving the wheels with the help of belts. The motors …read more

Continue reading Electric Longboard with All-New Everything

Scrap Bin Mods Move Science Forward

A first-time visitor to any bio or chem lab will have many wonders to behold, but few as captivating as the magnetic stirrer. A motor turns a magnet which in turn spins a Teflon-coated stir bar inside the beaker that sits on top. It’s brilliantly simple and so incredibly useful that it leaves one wondering why they’re not included as standard equipment in every kitchen range.

But as ubiquitous as magnetic stirrers are in the lab, they generally come in largish packages. [BantamBasher135] needed a much smaller stir plate to fit inside a spectrophotometer. With zero budget, he retrofitted the …read more

Continue reading Scrap Bin Mods Move Science Forward

Brushless HDD Motor Driver from 9V and Painter’s Tape

Hard drives work by spinning platters full of magnetized data while a read/write head very quickly harvests or changes bits as needed. Older (or perhaps cheaper) drives spin at 5400 RPM, better drives spin at 7200 RPM, and elite drives (that mortals like you never shell out for) spin in the 10k-15k RPM range. This spinning is thanks to a sweet combination of a bearing and a brushless DC motor.

Unfortunately you can’t drive a brushless motor without a brushless motor driver. Well, of course that’s not absolutely true — and [Tommy Callaway] has certainly hacked together a crude exception …read more

Continue reading Brushless HDD Motor Driver from 9V and Painter’s Tape