Hackaday Prize Entry: Non-Computational Fluid Dynamics

Computational Fluid Dynamics, or CFD, and is applied to everything from aircraft design to how good of a wing a new skyscraper will be. Of course, the science of building airfoils is much older than CFD, leading to the question of how airfoil design was done before computers.

The answer, of course, is a wind tunnel. Walk around a few very good air museums, and you’ll find wind tunnels ranging from the long wooden boxes built by the Wright brothers to fantastic plywood contraptions that are exceptionally interesting to woodworkers.

[Joel] needed final project as an upcoming aeronautical engineer, but …read more

Continue reading Hackaday Prize Entry: Non-Computational Fluid Dynamics

Hackaday Prize Entry: Solar WiFi Rover Roves At Night

[TK] has a stretch goal for his RC car project — enabling it to recharge on solar power during the day and roam around under remote Internet control at night. It’s like a miniature, backyard version of NASA’s Curiosity rover.

Right now, he’s gotten a Raspberry Pi Zero and a camera on board, and has them controlling the robot over WiFi. He looks like he’s having a great time piloting it around his house. Check out the video down below for (crashy) remote-controlled operation.

We can’t wait to see if solar power is remotely possible (tee-hee!) as an option for …read more

Continue reading Hackaday Prize Entry: Solar WiFi Rover Roves At Night

Hackaday Prize Entry: A WiFi Swiss Army Knife

WiFi is all around us, but if you want to work with this ubiquitous networking protocol, you’ll need to pull out a laptop or smartphone like a caveman. [Daniel] has a better idea. It’ s a simple, compact tool for cracking WiFi passwords or sending deauth packets to everyone at the local Starbucks. It’s an ESP Swiss Army Knife, and a great entry for the Hackaday Prize.

As you would expect, this WiFI Swiss Army Knife is powered by the ESP8266 and features a tiny OLED display and a bunch of buttons for the UI. With this, [Daniel] is able …read more

Continue reading Hackaday Prize Entry: A WiFi Swiss Army Knife

Hackaday Prize Entry: The Strength Of 3D Printed Parts

[Sam Barrett] is doing something that is sorely needed. He’s doing real materials research on FDM parts.

There’s nothing wrong with the rough experiments like hanging a 1 L bottle of water from the end of a rectangular test print to compare strengths. We also have our rules-of-thumb, like expecting the print to perform at 30% of injection molded strength. But these experiments are primitive and the guidelines are based on hearsay. Like early metallurgy or engineering; 3D printing is full of made-up stuff.

What [Sam] has done here is really amazing. He’s produced a model of a printed ABS …read more

Continue reading Hackaday Prize Entry: The Strength Of 3D Printed Parts

Hackaday Prize Entry: Diagnosing Concussions

Athletes of every age receive a lot of blows to the head. After a few years of this and a lot of concussions, symptoms similar to Alzheimer’s can appear. For his Hackaday Prize entry, [Mihir] wanted to build a simple device that could be given to high school coaches that would diagnose concussions. He came up with HeadsUp, a device so simple even a high school gym teacher could use it.

The origins of HeadsUp began as an augmented reality device, but after realizing that was a difficult project, pivoted to something a bit easier and even more useful. HeadsUp …read more

Continue reading Hackaday Prize Entry: Diagnosing Concussions

Hackaday Prize Entry: Helping Millions See Clearly

Slit lamps are prohibitively expensive in the third world areas of India where they are most needed. An invention that’s been around for over a hundred years, the slit lamp is a simple-in-concept way to see and diagnose a large array of ocular issues.

Since they are relatively old by technological standards, the principles behind them have become more and more understood as time has gone on. While a nice lab version with a corneal microscope is certainly better, innovations in manufacturing have brought the theoretical minimum cost of the device way down, or at least that’s what [Kewal Chand …read more

Continue reading Hackaday Prize Entry: Helping Millions See Clearly

Hackaday Prize Entry: Low Cost, DIY Thermal Imaging

A few years ago, thermal imaging sensors – cameras that could see heat – became very cheap. FLIR was going all-in with their Lepton module, and there were a number of clip-on cellphone accessories that gave the computer in your pocket the ability to see infrared.

Fast forward a few years, and you can still buy a thermal imaging sensor for your cellphone, and it still costs about the same as it did in 2013. For his Hackaday Prize project, [Josh] is building a more modern lower cost thermal imaging camera. It won’t have the resolution of the fancy $1000 …read more

Continue reading Hackaday Prize Entry: Low Cost, DIY Thermal Imaging

Hackaday Prize Entry: Smart USB Hub And IoT Power Meter

[Aleksejs Mirnijs] needed a tool to accurately measure the power consumption of his Raspberry Pi and Arduino projects, which is an important parameter for dimensioning adequate power supplies and battery packs. Since most SBC projects require a USB hub anyway, he designed a smart, WiFi-enabled 4-port USB hub that is also a power meter – his entry for this year’s Hackaday Prize.

[Aleksejs’s] design is based on the FE1.1s 4-port USB 2.0 hub controller, with two additional ports for charging. Each port features an LT6106 current sensor and a power MOSFET to individually switch devices on and off as required. …read more

Continue reading Hackaday Prize Entry: Smart USB Hub And IoT Power Meter

Hackaday Prize Entry: A Visible Spectrophotometer

Spectroscopy is one of the most useful tools in all of science, and for The Hackaday Prize’s Citizen Science effort [esben] is putting spectroscopy in the hands of every high school student. He’s built a super cheap, but very good spectrophotometer.

The idea of a spectrophotometer is simple enough – shine light through a sample, send that light through a diffraction grating, focus it, and shine the light onto a CCD. Implementing this simple system is all about the details, but with the right low-cost lenses and a 3D printed enclosure, [esben] has this more or less put together.

Of …read more

Continue reading Hackaday Prize Entry: A Visible Spectrophotometer

Hackaday Prize Entry: A Linear CCD Breakout

Linear CCDs are an exceptionally cool component. They can be used for DIY spectrometers, and if you’re feeling very adventurous, a homemade version of those crappy handheld scanners of the early 90s. Linear CCDs don’t see much use around these parts, though, which makes [esben]’s Hackaday Prize entry very cool. He’s building a breakout to make using these linear CCDs easier.

A linear CCD module looks like an overgrown DIP chip with a glass window right on top of a few thousand pixels laid out in a straight line. The data from these pixels isn’t output as a series of …read more

Continue reading Hackaday Prize Entry: A Linear CCD Breakout